Skip to main content

Underlying Event measurements in pp collisions at \( \sqrt {s} = 0.9 \) and 7 TeV with the ALICE experiment at the LHC

Abstract

We present measurements of Underlying Event observables in pp collisions at \( \sqrt {s} = 0.9 \) and 7TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p T,LT in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p T thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2–3 between the lower and higher collision energies, depending on the track p T threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed p T in the Transverse region by about 10–30%.

References

  1. [1]

    T. Sjöstrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053 [hep-ph/0402078] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    CDF collaboration, T. Affolder et al., Charged jet evolution and the underlying event in \( p\overline p \) collisions at 1.8 TeV, Phys. Rev. D 65 (2002) 092002 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    CDF collaboration, D. Acosta et al., The underlying event in hard interactions at the Tevatron \( \overline p p \) collider, Phys. Rev. D 70 (2004) 072002 [hep-ex/0404004] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    CDF collaboration, R. Field, Min-bias and the underlying event in Run 2 at CDF, Acta Phys. Polon. B 36 (2005) 167 [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    CDF collaboration, T. Aaltonen et al., Studying the underlying event in Drell-Yan and high transverse momentum jet production at the Tevatron, Phys. Rev. D 82 (2010) 034001 [arXiv:1003.3146] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    H. Caines, Underlying event studies at RHIC, arXiv:0910.5203 [INSPIRE].

  7. [7]

    ATLAS collaboration, G. Aad et al., Measurement of underlying event characteristics using charged particles in pp collisions at \( \sqrt {s} = 900\,GeV \) and 7 TeV with the ATLAS detector, Phys. Rev. D 83 (2011) 112001 [arXiv:1012.0791] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    CMS collaboration, V. Khachatryan et al., First measurement of the underlying event activity at the LHC with \( \sqrt {s} = 0.9\,TeV \), Eur. Phys. J. C 70 (2010) 555 [arXiv:1006.2083] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    S. Roesler, R. Engel and J. Ranft, The Monte Carlo event generator DPMJET-III, hep-ph/0012252 [INSPIRE].

  12. [12]

    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  16. [16]

    R. Corke and T. Sjöstrand, Multiparton interactions and rescattering, JHEP 01 (2010) 035 [arXiv:0911.1909] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    A. Capella, U. Sukhatme, C.-I. Tan and J. Tran Thanh Van, Dual parton model, Phys. Rept. 236 (1994) 225 [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    ALICE collaboration, K. Aamodt et al., First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged particle pseudorapidity density at \( \sqrt {s} = 900\;GeV \), Eur. Phys. J. C 65 (2010) 111 [arXiv:0911.5430] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    ALICE collaboration, K. Aamodt et al., Charged-particle multiplicity measurement in proton-proton collisions at \( \sqrt {s} = 0.9 \) and 2.36 TeV with ALICE at LHC, Eur. Phys. J. C 68 (2010) 89 [arXiv:1004.3034] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    ALICE collaboration, K. Aamodt et al., Charged-particle multiplicity measurement in proton-proton collisions at \( \sqrt {s} = 7\;TeV \) with ALICE at LHC, Eur. Phys. J. C 68 (2010) 345 [arXiv:1004.3514] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    ALICE collaboration, A.K. Aamodt et al., Midrapidity antiproton-to-proton ratio in pp collisions at \( \sqrt {s} = 0.9 \) and 7 TeV measured by the ALICE experiment, Phys. Rev. Lett. 105 (2010) 072002 [arXiv:1006.5432] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    ALICE collaboration, K. Aamodt et al., Two-pion Bose-Einstein correlations in central Pb-Pb collisions at \( \sqrt {{{s_{\text{NN}}}}} = 2.76\;TeV \), Phys. Lett. B 696 (2011) 328 [arXiv:1012.4035] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    ALICE collaboration, K. Aamodt et al., Transverse momentum spectra of charged particles in proton-proton collisions at \( \sqrt {s} = 900\;GeV \) with ALICE at the LHC, Phys. Lett. B 693 (2010) 53 [arXiv:1007.0719] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    ALICE collaboration, K. Aamodt et al., Strange particle production in proton-proton collisions at \( \sqrt {s} = 0.9\;TeV \) with ALICE at the LHC, Eur. Phys. J. C 71 (2011) 1594 [arXiv:1012.3257] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    ALICE collaboration, K. Aamodt et al., The ALICE experiment at the CERN LHC, JINST 3 (2008) S08002 [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    R. Brun, F. Bruyant, M. Maire, A.C. McPherson and P. Zanarini, GEANT3, CERN-DD-EE-84-1, CERN, Geneva Switzerland (1987) [INSPIRE].

    Google Scholar 

  28. [28]

    ALICE collaboration, K. Aamodt et al., Alignment of the ALICE inner tracking system with cosmic-ray tracks, JINST 5 (2010) P03003 [arXiv:1001.0502] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    T. Sjöstrand and M. van Zijl, A multiple interaction model for the event structure in hadron collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    ATLAS collaboration, Measurement of underlying event characteristics using charged particles in pp collisions at \( \sqrt {s} = 900\;GeV \) and 7 TeV with the ATLAS detector in a limited phase space, ATLAS-CONF-2011-009, CERN, Geneva Switzerland (2011).

  31. [31]

    CMS collaboration, S. Chatrchyan et al., Measurement of the underlying event activity at the LHC with \( \sqrt {s} = 7\;TeV \) and comparison with \( \sqrt {s} = 0.9\;TeV \), CERN-PH-EP-2011-059, CERN, Geneva Switzerland (2011) [JHEP 09 (2011) 109] [arXiv:1107.0330] [INSPIRE].

    Google Scholar 

  32. [32]

    ATLAS collaboration, G. Aad et al., Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC, New J. Phys. 13 (2011) 053033 [arXiv:1012.5104] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors