Advertisement

Running of radiative neutrino masses: the scotogenic model

  • Romain Bouchand
  • Alexander Merle
Article

Abstract

We study the renormalization group equations of Ma’s scotogenic model, which generates an active neutrino mass at 1-loop level. In addition to other benefits, the main advantage of the mechanism exploited in this model is to lead to a natural loop-suppression of the neutrino mass, and therefore to an explanation for its smallness. However, since the structure of the neutrino mass matrix is altered compared to the ordinary type I seesaw case, the corresponding running is altered as well. We have derived the full set of renormalization group equations for the scotogenic model which, to our knowledge, had not been presented previously in the literature. This set of equations reflects some interesting structural properties of the model, and it is an illustrative example for how the running of neutrino parameters in radiative models is modified compared to models with tree-level mass generation. We also study a simplified numerical example to illustrate some general tendencies of the running. Interestingly, the structure of the RGEs can be exploited such that a bimaximal leptonic mixing pattern at the high-energy scale is translated into a valid mixing pattern at low energies, featuring a large value of θ 13. This suggests very interesting connections to flavour symmetries.

Keywords

Beyond Standard Model Neutrino Physics Renormalization Group 

References

  1. [1]
    T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    V.M. Lobashev, Direct search for the neutrino mass in the beta decay of tritium: status of theTroitsk nu-massexperiment, Phys. Atom. Nucl. 63 (2000) 962 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Kraus et al., Final results from phase II of the Mainz neutrino mass search in tritium beta decay, Eur. Phys. J. C 40 (2005) 447 [hep-ex/0412056] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H. Klapdor-Kleingrothaus et al., Latest results from the Heidelberg-Moscow double beta decay experiment, Eur. Phys. J. A 12 (2001) 147 [hep-ph/0103062] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E. Andreotti et al., 130 Te neutrinoless double-beta decay with CUORICINO, Astropart. Phys. 34 (2011) 822 [arXiv:1012.3266] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan, 13-14 Feb 1979 [Conf. Proc. C7902131 (1979) 95] [INSPIRE].
  15. [15]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North-Holland Publ. Co., Amsterdam Netherlands (1979) [Conf. Proc. C790927 (1979) 315] [INSPIRE].
  16. [16]
    S.L. Glashow, The future of elementary particle physics, talk given at Colloquium in honor of A. Visconti, Marseille France, Jul 1979 [NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 687] [INSPIRE].Google Scholar
  17. [17]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Neutrino mass matrix running for nondegenerate seesaw scales, Phys. Lett. B 538 (2002) 87 [hep-ph/0203233] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Kersten, Renormalization group evolution of neutrino masses, Master’s Thesis, Technische Universität München, Munich Germany (2001), http://www.mpi-hd.mpg.de/lin/pubs/masterthesis_KerstenJrn.zip.
  21. [21]
    J. Kersten, Quantum corrections to the lepton flavour structure and applications, Ph.D. Thesis, Technische Universität München, Munich Germany (2004), http://www.mpi-hd.mpg.de/lin/pubs/phdthesis_KerstenJrn.zip.
  22. [22]
    M.A. Schmidt, Renormalization group evolution in the type-I + II seesaw model, Phys. Rev. D 76 (2007) 073010 [arXiv:0705.3841] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Bergström, T. Ohlsson and H. Zhang, Threshold effects on renormalization group running of neutrino parameters in the low-scale seesaw model, Phys. Lett. B 698 (2011) 297 [arXiv:1009.2762] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  25. [25]
    K.S. Babu, Model ofcalculableMajorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    M. Aoki, S. Kanemura and O. Seto, Neutrino mass, dark matter and baryon asymmetry via TeV-scale physics without fine-tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Aoki, S. Kanemura and K. Yagyu, Triviality and vacuum stability bounds in the three-loop neutrino mass model, Phys. Rev. D 83 (2011) 075016 [arXiv:1102.3412] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Kubo, E. Ma and D. Suematsu, Cold dark matter, radiative neutrino mass, μeγ and neutrinoless double beta decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E. Ma, Neutrino mass, dark matter and leptogenesis, Nucl. Phys. Proc. Suppl. 168 (2007) 347 [hep-ph/0611181] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Aristizabal Sierra, J. Kubo, D. Restrepo, D. Suematsu and O. Zapata, Radiative seesaw: warm dark matter, collider and lepton flavour violating signals, Phys. Rev. D 79 (2009) 013011 [arXiv:0808.3340] [INSPIRE].ADSGoogle Scholar
  33. [33]
    G.B. Gelmini, E. Osoba and S. Palomares-Ruiz, Inert-sterile neutrino: cold or warm dark matter candidate, Phys. Rev. D 81 (2010) 063529 [arXiv:0912.2478] [INSPIRE].ADSGoogle Scholar
  34. [34]
    D. Suematsu, T. Toma and T. Yoshida, Enhancement of the annihilation of dark matter in a radiative seesaw model, Phys. Rev. D 82 (2010) 013012 [arXiv:1002.3225] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  36. [36]
    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the dark scalar doublet and its impact on the standard-model Higgs boson at colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. Atwood, S. Bar-Shalom and A. Soni, Signature of heavy Majorana neutrinos at a linear collider: enhanced charged Higgs pair production, Phys. Rev. D 76 (2007) 033004 [hep-ph/0701005] [INSPIRE].ADSGoogle Scholar
  38. [38]
    N. Haba and K. Tsumura, ν-two Higgs doublet model and its collider phenomenology, JHEP 06 (2011) 068 [arXiv:1105.1409] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Adulpravitchai, M. Lindner and A. Merle, Confronting flavour symmetries and extended scalar sectors with lepton flavour violation bounds, Phys. Rev. D 80 (2009) 055031 [arXiv:0907.2147] [INSPIRE].ADSGoogle Scholar
  40. [40]
    Y. Ahn and S.K. Kang, Non-zero θ 13 and CP-violation in a model with A 4 flavor symmetry, arXiv:1203.4185 [INSPIRE].
  41. [41]
    A. Adulpravitchai, M. Lindner, A. Merle and R.N. Mohapatra, Radiative transmission of lepton flavor hierarchies, Phys. Lett. B 680 (2009) 476 [arXiv:0908.0470] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the D = 5 Weinberg operator at one-loop order, arXiv:1204.5862 [INSPIRE].
  45. [45]
    S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Bergström, M. Malinský, T. Ohlsson and H. Zhang, Renormalization group running of neutrino parameters in the inverse seesaw model, Phys. Rev. D 81 (2010) 116006 [arXiv:1004.4628] [INSPIRE].ADSGoogle Scholar
  47. [47]
    R. Bouchand, Radiative neutrino mass generation and renormalization group running in the Ma-model, Master’s Thesis, KTH Royal Institute of Technology, Stockholm Sweden (2012), TRITA-FYS-2012:18, http://kth.diva-portal.org/smash/get/diva2:517225/FULLTEXT01.
  48. [48]
    S. Ray, Renormalization group evolution of neutrino masses and mixing in seesaw models: a review, Int. J. Mod. Phys. A 25 (2010) 4339 [arXiv:1005.1938] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    P.H. Chankowski and S. Pokorski, Quantum corrections to neutrino masses and mixing angles, Int. J. Mod. Phys. A 17 (2002) 575 [hep-ph/0110249] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Y.F. Pirogov and O.V. Zenin, Two loop renormalization group restrictions on the standard model and the fourth chiral family, Eur. Phys. J. C 10 (1999) 629 [hep-ph/9808396] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].ADSGoogle Scholar
  55. [55]
    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401 [hep-ph/0305273] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Ibarra and C. Simonetto, Understanding neutrino properties from decoupling right-handed neutrinos and extra Higgs doublets, JHEP 11 (2011) 022 [arXiv:1107.2386] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Hagedorn, J. Kersten and M. Lindner, Stability of texture zeros under radiative corrections in see-saw models, Phys. Lett. B 597 (2004) 63 [hep-ph/0406103] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, REAP, http://users.physik.tu-muenchen.de/rge/REAP/index.html.
  61. [61]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, MPT, http://users.physik.tu-muenchen.de/rge/MPT/index.html.
  62. [62]
    B. Grzadkowski, M. Lindner and S. Theisen, Nonlinear evolution of Yukawa couplings in the double Higgs and supersymmetric extensions of the standard model, Phys. Lett. B 198 (1987) 64 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J. Casas, J. Espinosa, A. Ibarra and I. Navarro, Nearly degenerate neutrinos, supersymmetry and radiative corrections, Nucl. Phys. B 569 (2000) 82 [hep-ph/9905381] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    W. Grimus and L. Lavoura, Renormalization of the neutrino mass operators in the multi-Higgs-doublet standard model, Eur. Phys. J. C 39 (2005) 219 [hep-ph/0409231] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A. Arhrib, R. Benbrik and N. Gaur, Hγγ in inert Higgs doublet model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].ADSGoogle Scholar
  67. [67]
    V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Bimaximal mixing of three neutrinos, Phys. Lett. B 437 (1998) 107 [hep-ph/9806387] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    R.N. Mohapatra and S. Nussinov, Gauge model for bimaximal neutrino mixing, Phys. Lett. B 441 (1998) 299 [hep-ph/9808301] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    Q. Shafi and Z. Tavartkiladze, Anomalous flavor U(1): predictive texture for bimaximal neutrino mixing, Phys. Lett. B 482 (2000) 145 [hep-ph/0002150] [INSPIRE].ADSGoogle Scholar
  70. [70]
    E. Ma, D.P. Roy and S. Roy, Gauged L μL τ with large muon anomalous magnetic moment and the bimaximal mixing of neutrinos, Phys. Lett. B 525 (2002) 101 [hep-ph/0110146] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    R. Kuchimanchi and R.N. Mohapatra, Bimaximal neutrino mixing from a local SU(2) horizontal symmetry, Phys. Rev. D 66 (2002) 051301 [hep-ph/0207110] [INSPIRE].ADSGoogle Scholar
  72. [72]
    G. Altarelli, F. Feruglio and L. Merlo, Revisiting bimaximal neutrino mixing in a model with S 4 discrete symmetry, JHEP 05 (2009) 020 [arXiv:0903.1940] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    L. Merlo, Bimaximal neutrino mixing with discrete flavour symmetries, J. Phys. Conf. Ser. 335 (2011) 012049 [arXiv:1101.3867] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    D. Meloni, Bimaximal mixing and large θ 13 in a SUSY SU(5) model based on S 4, JHEP 10 (2011) 010 [arXiv:1107.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    ATLAS collaboration, G. Aad et al., Search for the Higgs boson in the \( H \to W{{W}^{{\left( * \right)}}} \to {{\ell }^{ + }}\nu {{\ell }^{ - }}\overline \nu \) decay channel in pp collisions at \( \sqrt {s} = {7} \) TeV with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 111802 [arXiv:1112.2577] [INSPIRE].
  76. [76]
    ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt {s} = {7} \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    V. Barger, D. Marfatia and K. Whisnant, Progress in the physics of massive neutrinos, Int. J. Mod. Phys. E 12 (2003) 569 [hep-ph/0308123] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Dürr and A. Merle, work in progress.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Theoretical Physics, School of Engineering SciencesKTH Royal Institute of Technology — AlbaNova University CenterStockholmSweden
  2. 2.Physics and AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom

Personalised recommendations