Advertisement

Contact manifolds, contact instantons, and twistor geometry

  • Martin Wolf
Article

Abstract

Recently, Källén & Zabzine computed the partition function of a twisted supersymmetric Yang-Mills theory on the five-dimensional sphere using localisation techniques. Key to their construction is a five-dimensional generalisation of the instanton equation to which they refer as the contact instanton equation. Subject of this article is the twistor construction of this equation when formulated on K-contact manifolds and the discussion of its integrability properties. We also present certain extensions to higher dimensions and supersymmetric generalisations.

Keywords

Integrable Equations in Physics Solitons Monopoles and Instantons Differential and Algebraic Geometry M-Theory 

References

  1. [1]
    R.S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977) 81 [INSPIRE].ADSGoogle Scholar
  2. [2]
    M. Atiyah and R.S. Ward, Instantons and algebraic geometry, Commun. Math. Phys. 55 (1977) 117 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967) 345 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    R. Penrose, Twistor quantization and curved space-time, Int. J. Theor. Phys. 1 (1968) 61 [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    R. Penrose, Solutions of the zero-rest-mass equations, J. Math. Phys. 10 (1969) 38 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    R. Penrose and M.A. MacCallum, Twistor theory: an approach to the quantization of fields and space-time, Phys. Rept. 6 (1972) 241 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M. Atiyah, N.J. Hitchin, and I. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. Lond. A 362 (1978) 425.MathSciNetADSGoogle Scholar
  8. [8]
    R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav. 7 (1976) 31 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    R.S. Ward, Self-dual space-times with cosmological constant, Commun. Math. Phys. 78 (1980) 1 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  10. [10]
    Y. I. Manin, Gauge field theory and complex geometry, Springer Verlag, Berlin Germany (1988).MATHGoogle Scholar
  11. [11]
    R.S. Ward and R.O. Wells, Twistor geometry and field theory, Cambridge University Press, Cambridge U.K. (1990).CrossRefGoogle Scholar
  12. [12]
    L.J. Mason and N.M.J. Woodhouse, Integrability, self-duality, and twistor theory, Clarendon, Oxford U.K. (1996).MATHGoogle Scholar
  13. [13]
    M. Dunajski, Solitons, instantons and twistors, Oxford University Press, Oxford U.K. (2009).Google Scholar
  14. [14]
    J. Källen and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric gauge theories on the five-sphere, arXiv:1203.0371 [INSPIRE].
  16. [16]
    D. Harland and C. Nölle, Instantons and Killing spinors, JHEP 03 (2012) 082 [arXiv:1109.3552] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Tian, Gauge theory and calibrated geometry. 1., Annals Math. 151 (2000) 193 [math/0010015] [INSPIRE].MATHCrossRefGoogle Scholar
  18. [18]
    M. Itoh, Contact metric 5-manifolds, CR twistor spaces and integrability, J. Math. Phys. 43 (2002) 3783 [Erratum ibid. 44 (2003) 366].Google Scholar
  19. [19]
    J.H. Rawnsley, Flat partial connections and holomorphic structures in C vector bundles, Proc. Amer. Math. Soc. 73 (1979) 391.MathSciNetMATHGoogle Scholar
  20. [20]
    A.D. Popov, C. Sämann and M. Wolf, The topological B-model on a mini-supertwistor space and supersymmetric Bogomolny monopole equations, JHEP 10 (2005) 058 [hep-th/0505161] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [INSPIRE].
  25. [25]
    H. Linander and F. Ohlsson, (2, 0) theory on circle fibrations, JHEP 01 (2012) 159 [arXiv:1111.6045] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    T.N. Bailey and M.G. Eastwood, Complex paraconformal manifoldstheir differential geometry and twistor theory, Forum Math. 3 (1991) 61.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    E. Corrigan, C. Devchand, D. Fairlie and J. Nuyts, First order equations for gauge fields in spaces of dimension greater than four, Nucl. Phys. B 214 (1983) 452 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    R.S. Ward, Completely solvable gauge field equations in dimension greater than four, Nucl. Phys. B 236 (1984) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.K. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. 50 (1985) 1.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    K.K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math. 38 (1986) 257.MathSciNetCrossRefGoogle Scholar
  31. [31]
    S.K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231.MathSciNetCrossRefGoogle Scholar
  32. [32]
    M. Mamone Capriai and S.M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988) 517.MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    L. Baulieu, H. Kanno and I. Singer, Special quantum field theories in eight-dimensions and other dimensions, Commun. Math. Phys. 194 (1998) 149 [hep-th/9704167] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  34. [34]
    S.K. Donaldson and R.P. Thomas, Gauge theory in higher dimensions, in The geometric universe, Oxford University Press, Oxford U.K. (1998).Google Scholar
  35. [35]
    S. Donaldson and E. Segal, Gauge theory in higher dimensions, II, arXiv:0902.3239 [INSPIRE].
  36. [36]
    A.D. Popov, Non-abelian vortices, super-Yang-Mills theory and Spin(7)-instantons, Lett. Math. Phys. 92 (2010) 253 [arXiv:0908.3055] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  37. [37]
    D. Harland and A.D. Popov, Yang-Mills fields in flux compactifications on homogeneous manifolds with SU(4)-structure, JHEP 02 (2012) 107 [arXiv:1005.2837] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A.D. Popov and R.J. Szabo, Double quiver gauge theory and nearly Kähler flux compactifications, JHEP 02 (2012) 033 [arXiv:1009.3208] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Fairlie and J. Nuyts, Spherically symmetric solutions of gauge theories in eight-dimensions, J. Phys. A 17 (1984) 2867 [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    E. Corrigan, P. Goddard and A. Kent, Some comments on the ADHM construction in 4k-dimensions, Commun. Math. Phys. 100 (1985) 1 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  41. [41]
    S. Fubini and H. Nicolai, The octonionic instanton, Phys. Lett. B 155 (1985) 369 [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    T.A. Ivanova and A.D. Popov, Self-dual Yang-Mills fields in d = 7, 8, octonions and Ward equations, Lett. Math. Phys. 24 (1992) 85 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    T.A. Ivanova and A.D. Popov, (Anti-)self-dual gauge fields in dimension D ≥ 4, Theor. Math. Phys. 94 (1993) 225 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  44. [44]
    M. Günaydin and H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton, Phys. Lett. B 351 (1995) 169 [Addendum ibid. B 376 (1996) 329] [hep-th/9502009] [INSPIRE].
  45. [45]
    A.D. Popov, Hermitian Yang-Mills equations and pseudo-holomorphic bundles on nearly Kähler and nearly Calabi-Yau twistor 6-manifolds, Nucl. Phys. B 828 (2010) 594 [arXiv:0907.0106] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D. Harland, T.A. Ivanova, O. Lechtenfeld and A.D. Popov, Yang-Mills flows on nearly Kähler manifolds and G 2 -instantons, Commun. Math. Phys. 300 (2010) 185 [arXiv:0909.2730] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  47. [47]
    F.P. Correia, Hermitian Yang-Mills instantons on Calabi-Yau cones, JHEP 12 (2009) 004 [arXiv:0910.1096] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    I. Bauer, T.A. Ivanova, O. Lechtenfeld and F. Lubbe, Yang-Mills instantons and dyons on homogeneous G 2 -manifolds, JHEP 10 (2010) 044 [arXiv:1006.2388] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    F.P. Correia, Hermitian Yang-Mills instantons on resolutions of Calabi-Yau cones, JHEP 02 (2011) 054 [arXiv:1009.0526] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    A.S. Haupt, T.A. Ivanova, O. Lechtenfeld and A.D. Popov, Chern-Simons flows on Aloff-Wallach spaces and Spin(7)-instantons, Phys. Rev. D 83 (2011) 105028 [arXiv:1104.5231] [INSPIRE].ADSGoogle Scholar
  51. [51]
    K.-P. Gemmer, O. Lechtenfeld, C. Nölle and A.D. Popov, Yang-Mills instantons on cones and sine-cones over nearly Kähler manifolds, JHEP 09 (2011) 103 [arXiv:1108.3951] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Dunajski and M. Hoegner, SU(2) solutions to self-duality equations in eight dimensions, J. Geom. Phys. 62 (2012) 1747 [arXiv:1109.4537] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  53. [53]
    T.A. Ivanova and A.D. Popov, Instantons on special holonomy manifolds, Phys. Rev. D 85 (2012) 105012 [arXiv:1203.2657] [INSPIRE].ADSGoogle Scholar
  54. [54]
    D.E. Blair, Contact manifolds and Riemannian geometry, Springer Verlag, Berlin Germany (1976).Google Scholar
  55. [55]
    D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhäuser, Boston U.S.A. (2010).MATHCrossRefGoogle Scholar
  56. [56]
    C.P. Boyer and K. Galicki, Sasakian geometry, holonomy and supersymmetry, math/0703231 [INSPIRE].
  57. [57]
    J. Sparks, Sasaki-Einstein manifolds, Surveys Diff. Geom. 16 (2011) 265 [arXiv:1004.2461] [INSPIRE].MathSciNetGoogle Scholar
  58. [58]
    N. Woodhouse, Real methods in twistor theory, Class. Quant. Grav. 2 (1985) 257 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  59. [59]
    C.R. LeBrun, Twistor CR manifolds and three-dimensional conformal geometry, Trans. Amer. Math. Soc. 284 (1984) 601.MathSciNetMATHCrossRefGoogle Scholar
  60. [60]
    M. Dunajski and P. Tod, Paraconformal geometry of nth order ODEs and exotic holonomy in dimension four, J. Geom. Phys. 56 (2006) 1790 [math/0502524] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  61. [61]
    L. Vezzoni, Connections on contact manifolds and contact twistor space, Isr. J. Math. 178 (2010) 253.MathSciNetMATHCrossRefGoogle Scholar
  62. [62]
    A.D. Popov, Self-dual Yang-Mills: symmetries and moduli space, Rev. Math. Phys. 11 (1999) 1091 [hep-th/9803183] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  63. [63]
    M. Wolf, On hidden symmetries of a super gauge theory and twistor string theory, JHEP 02 (2005) 018 [hep-th/0412163] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Wolf, Twistors and aspects of integrability of self-dual SYM theory, hep-th/0511230 [INSPIRE].
  65. [65]
    A.D. Popov and M. Wolf, Hidden symmetries and integrable hierarchy of the \( \mathcal{N} = {4} \) supersymmetric Yang-Mills equations, Commun. Math. Phys. 275 (2007) 685 [hep-th/0608225] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  66. [66]
    K. Pohlmeyer, On the Lagrangian theory of anti(-self-)dual fields in four-dimensional Euclidean space, Commun. Math. Phys. 72 (1980) 37 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    L. Dolan, Kac-Moody algebras and exact solvability in hadronic physics, Phys. Rept. 109 (1984) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    A.D. Popov and C.R. Preitschopf, Extended conformal symmetries of the self-dual Yang-Mills equations, Phys. Lett. B 374 (1996) 71 [hep-th/9512130] [INSPIRE].MathSciNetADSGoogle Scholar
  69. [69]
    T.A. Ivanova, On current algebra of symmetries of the selfdual Yang-Mills equations, J. Math. Phys. 39 (1998) 79 [hep-th/9702144] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  70. [70]
    M. Wolf, A connection between twistors and superstring σ-models on coset superspaces, JHEP 09 (2009) 071 [arXiv:0907.3862] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Batchelor, The structure of supermanifolds, Trans. Amer. Math. Soc. 253 (1979) 329.MathSciNetMATHCrossRefGoogle Scholar
  72. [72]
    S.A. Merkulov, Paraconformal supermanifolds and nonstandard \( \mathcal{N} \) extended supergravity models, Class. Quant. Grav. 8 (1991) 557 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  73. [73]
    S.A. Merkulov, Supersymmetric non-linear graviton, Func. Anal. Appl. 26 (1992) 69.MathSciNetCrossRefGoogle Scholar
  74. [74]
    S.A. Merkulov, Simple supergravity, supersymmetric nonlinear gravitons and supertwistor theory, Class. Quant. Grav. 9 (1992) 2369 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  75. [75]
    S.A. Merkulov, Quaternionic, quaternionic Kähler, and hyper-Kähler supermanifolds, Lett. Math. Phys. 25 (1992) 7.MathSciNetADSMATHCrossRefGoogle Scholar
  76. [76]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  77. [77]
    A.D. Popov and C. Sämann, On supertwistors, the Penrose-Ward transform and \( \mathcal{N} = {4} \) super Yang-Mills theory, Adv. Theor. Math. Phys. 9 (2005) 931 [hep-th/0405123] [INSPIRE].MathSciNetMATHGoogle Scholar
  78. [78]
    N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    R. Boels, L. Mason and D. Skinner, Supersymmetric gauge theories in twistor space, JHEP 02 (2007) 014 [hep-th/0604040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    M. Wolf, Self-dual supergravity and twistor theory, Class. Quant. Grav. 24 (2007) 6287 [arXiv:0705.1422] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  81. [81]
    L. Mason and M. Wolf, Twistor actions for self-dual supergravities, Commun. Math. Phys. 288 (2009) 97 [arXiv:0706.1941] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  82. [82]
    P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SurreyGuildfordUnited Kingdom

Personalised recommendations