New Higgs production mechanism in composite Higgs models

Article

Abstract

Composite Higgs models are only now starting to be probed at the Large Hadron Collider by Higgs searches. We point out that new resonances, abundant in these models, can mediate new production mechanisms for the composite Higgs. The new channels involve the exchange of a massive color octet and single production of new fermion resonances with subsequent decays into the Higgs and a Standard Model quark. The sizable cross section and very distinctive kinematics allow for a very clean extraction of the signal over the background with high statistical significance. Heavy gluon masses up to 2.8 TeV can be probed with data collected during 2012 and up to 5 TeV after the energy upgrade to \( \sqrt {s} = {14} \) TeV.

Keywords

Higgs Physics Technicolor and Composite Models 

References

  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSGoogle Scholar
  2. [2]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M.S. Carena, E. Ponton, J. Santiago and C.E. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M.S. Carena, E. Ponton, J. Santiago and C. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC experimental scrutiny, EPJ Web Conf. 28 (2012) 08004 [arXiv:1202.1286] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, arXiv:1202.3144 [INSPIRE].
  10. [10]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Contino, Hunting the composite Higgs at the LHC, talk given at the workshop on Strongly Coupled Physics Beyond the Standard Model, January 26, ICPT, Trieste, Italy (2012).Google Scholar
  13. [13]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N. Vignaroli, A new strategy to discover heavy colored vectors at the early LHC, Nuovo Cim. C 34 (2011) 6 [arXiv:1107.4558] [INSPIRE].Google Scholar
  15. [15]
    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, Phys. Lett. B 707 (2012) 88 [arXiv:1106.4054] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Barcelo, A. Carmona, M. Chala, M. Masip and J. Santiago, Single vectorlike quark production at the LHC, Nucl. Phys. B 857 (2012) 172 [arXiv:1110.5914] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Bini, R. Contino and N. Vignaroli, Heavy-light decay topologies as a new strategy to discover a heavy gluon, JHEP 01 (2012) 157 [arXiv:1110.6058] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B.A. Dobrescu, K. Kong and R. Mahbubani, Prospects for top-prime quark discovery at the Tevatron, JHEP 06 (2009) 001 [arXiv:0902.0792] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Brooijmans et al., Les Houches 2011: physics at TeV colliders new physics working group report, arXiv:1203.1488 [INSPIRE].
  20. [20]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Falkowski and M. Pérez-Victoria, Holographic un-Higgs, Phys. Rev. D 79 (2009) 035005 [arXiv:0810.4940] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. del Aguila, G.L. Kane and M. Quirós, A possible method to produce and detect Higgs bosons at hadron colliders, Phys. Rev. Lett. 63 (1989) 942 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. del Aguila, L. Ametller, G.L. Kane and J. Vidal, Vector like fermion and standard Higgs production at hadron colliders, Nucl. Phys. B 334 (1990) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Aguilar-Saavedra, Light Higgs boson discovery from fermion mixing, JHEP 12 (2006) 033 [hep-ph/0603200] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G.D. Kribs, A. Martin and T.S. Roy, Higgs boson discovery through top-partners decays using jet substructure, Phys. Rev. D 84 (2011) 095024 [arXiv:1012.2866] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Azatov et al., Higgs boson production via vector-like top-partner decays: diphoton or multilepton plus multijets channels at the LHC, arXiv:1204.0455 [INSPIRE].
  30. [30]
    G. Azuelos et al., Exploring little Higgs models with ATLAS at the LHC, Eur. Phys. J. C 39S2 (2005) 13 [hep-ph/0402037] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N. Vignaroli, Discovering the composite Higgs through the decay of a heavy fermion, arXiv:1204.0468 [INSPIRE].
  32. [32]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The custodial Randall-Sundrum model: from precision tests to Higgs physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Azatov, M. Toharia and L. Zhu, Higgs production from gluon fusion in warped extra dimensions, Phys. Rev. D 82 (2010) 056004 [arXiv:1006.5939] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Carena, S. Casagrande, F. Goertz, U. Haisch and M. Neubert, Higgs production in a warped extra dimension, arXiv:1204.0008 [INSPIRE].
  38. [38]
    CMS collaboration, A search using multivariate techniques for a standard model Higgs boson decaying into two photons, PAS-HIG-12-001 (2012).
  39. [39]
    CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, PAS-HIG-12-008 (2012).
  40. [40]
    G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Ultra visible warped model from flavor triviality and improved naturalness, Phys. Rev. D 83 (2011) 115003 [arXiv:1007.0243] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Extraordinary phenomenology from warped flavor triviality, Phys. Lett. B 703 (2011) 486 [arXiv:1101.2902] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Redi, Composite MFV and beyond, arXiv:1203.4220 [INSPIRE].
  45. [45]
    M. Carena, A.D. Medina, B. Panes, N.R. Shah and C.E. Wagner, Collider phenomenology of gauge-Higgs unification scenarios in warped extra dimensions, Phys. Rev. D 77 (2008) 076003 [arXiv:0712.0095] [INSPIRE].ADSGoogle Scholar
  46. [46]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, arXiv:1204.6333 [INSPIRE].
  47. [47]
    M. Redi and A. Tesi, Implications of a light Higgs in composite models, arXiv:1205.0232 [INSPIRE].
  48. [48]
    D. Marzocca, M. Serone and J. Shu, General composite Higgs models, arXiv:1205.0770 [INSPIRE].
  49. [49]
    J. Berger, J. Hubisz and M. Perelstein, A fermionic top partner: naturalness and the LHC, arXiv:1205.0013 [INSPIRE].
  50. [50]
    D. Dicus, B. Dutta and S. Nandi, Top quark signature in extended color theories, Phys. Rev. D 51 (1995) 6085 [hep-ph/9412370] [INSPIRE].ADSGoogle Scholar
  51. [51]
    B.A. Dobrescu, K. Kong and R. Mahbubani, Massive color-octet bosons and pairs of resonances at hadron colliders, Phys. Lett. B 670 (2008) 119 [arXiv:0709.2378] [INSPIRE].ADSGoogle Scholar
  52. [52]
    B. Lillie, J. Shu and T.M. Tait, Top Compositeness at the Tevatron and LHC, JHEP 04 (2008)087 [arXiv:0712.3057] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    K. Kumar, T.M. Tait and R. Vega-Morales, Manifestations of top compositeness at colliders, JHEP 05 (2009) 022 [arXiv:0901.3808] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    G. Servant, Four-top events at the LHC, DESY-PROC-2010-01 (2010).Google Scholar
  55. [55]
    M. Perelstein and A. Spray, Four boosted tops from a Regge gluon, JHEP 09 (2011) 008 [arXiv:1106.2171] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G. Cacciapaglia et al., Four tops on the real projective plane at LHC, JHEP 10 (2011) 042 [arXiv:1107.4616] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Aguilar-Saavedra and J. Santiago, Four tops and the \( t\overline t \) forward-backward asymmetry, Phys. Rev. D 85 (2012) 034021 [arXiv:1112.3778] [INSPIRE].ADSGoogle Scholar
  58. [58]
    N. Zhou, D. Whiteson and T.M. Tait, Limits on four-top production from the ATLAS same-sign top-quark search, Phys. Rev. D 85 (2012) 091501 [arXiv:1203.5862] [INSPIRE].ADSGoogle Scholar
  59. [59]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Atre, M. Carena, T. Han and J. Santiago, Heavy quarks above the top at the Tevatron, Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Atre et al., Model-independent searches for new quarks at the LHC, JHEP 08 (2011) 080 [arXiv:1102.1987] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    F. del Aguila, A. Carmona and J. Santiago, Tau custodian searches at the LHC, Phys. Lett. B 695 (2011) 449 [arXiv:1007.4206] [INSPIRE].ADSGoogle Scholar
  63. [63]
    ATLAS collaboration, G. Aad et al., Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at \( \sqrt {s} = {7} \) TeV with the ATLAS detector, Phys. Lett. B 712 (2012) 22 [arXiv:1112.5755] [INSPIRE].ADSGoogle Scholar
  64. [64]
    G.H. Brooijmans et al., New physics at the LHC: A Les Houches report. Physics at TeV colliders 2007 — New physics working group, arXiv:0802.3715 [INSPIRE].
  65. [65]
    CMS collaboration, A search for resonances in semileptonic top pair production, PAS-TOP-11-009 (2011).
  66. [66]
    ATLAS collaboration, A search for ttbar resonances in the dilepton channel in 1.04 fb −1 of pp collisions at \( \sqrt {s} = {7} \) TeV, ATLAS-CONF-2011-123 (2011).
  67. [67]
    ATLAS collaboration, A search for \( t\overline t \) resonances in the lepton plus jets channel using 2.05 fb −1 of pp collisions at \( \sqrt {s} = {7} \) TeV, ATLAS-CONF-2012-029 (2012).
  68. [68]
    A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev. D 78 (2008) 074026 [arXiv:0806.3247] [INSPIRE].ADSGoogle Scholar
  69. [69]
    B. Lillie, J. Shu and T.M. Tait, Kaluza-Klein gluons as a diagnostic of warped models, Phys. Rev. D 76 (2007) 115016 [arXiv:0706.3960] [INSPIRE].ADSGoogle Scholar
  70. [70]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  71. [71]
    ATLAS collaboration, G. Aad et al., Search for new physics in dijet mass and angular distributions in pp collisions at \( \sqrt {s} = {7} \) TeV measured with the ATLAS detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    CMS collaboration, S. Chatrchyan et al., Search for quark compositeness in dijet angular distributions from pp collisions at \( \sqrt {s} = {7} \) TeV, JHEP 05 (2012) 055 [arXiv:1202.5535] [INSPIRE].ADSGoogle Scholar
  73. [73]
    ATLAS collaboration, G. Aad et al., Search for new physics in the dijet mass distribution using 1 fb −1 of pp collision data at \( \sqrt {s} = {7} \) TeV collected by the ATLAS detector, Phys. Lett. B 708 (2012) 37 [arXiv:1108.6311] [INSPIRE].ADSGoogle Scholar
  74. [74]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, sumbitted to Comput. Phys. Comm., arXiv:0903.2225 [INSPIRE].
  78. [78]
    W. Skiba and D. Tucker-Smith, Using jet mass to discover vector quarks at the LHC, Phys. Rev. D 75 (2007) 115010 [hep-ph/0701247] [INSPIRE].ADSGoogle Scholar
  79. [79]
    B. Holdom, t-prime at the LHC: the physics of discovery, JHEP 03 (2007) 063 [hep-ph/0702037] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    B. Holdom, The heavy quark search at the LHC, JHEP 08 (2007) 069 [arXiv:0705.1736] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSGoogle Scholar
  83. [83]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].ADSGoogle Scholar
  84. [84]
    B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.CAFPE and Dpto. de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain

Personalised recommendations