Higher derivative extension of 6D chiral gauged supergravity

  • Eric Bergshoeff
  • Frederik Coomans
  • Ergin Sezgin
  • Antoine Van Proeyen
Open Access
Article

Abstract

Six-dimensional (1, 0) supersymmetric gauged Einstein-Maxwell supergravity is extended by the inclusion of a supersymmetric Riemann tensor squared invariant. Both the original model as well as the Riemann tensor squared invariant are formulated off-shell and consequently the total action is off-shell invariant without modification of the supersymmetry transformation rules. In this formulation, superconformal techniques, in which the dilaton Weyl multiplet plays a crucial role, are used. It is found that the gauging of the U(1) R-symmetry in the presence of the higher-order derivative terms does not modify the positive exponential in the dilaton potential. Moreover, the supersymmetric Minkowski4 × S2 compactification of the original model, without the higher-order derivatives, is remarkably left intact. It is shown that the model also admits non-supersymmetric vacuum solutions that are direct product spaces involving de Sitter spacetimes and negative curvature internal spaces.

Keywords

Field Theories in Higher Dimensions Space-Time Symmetries Supergravity Models 

References

  1. [1]
    E. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    E. Bergshoeff, A. Salam and E. Sezgin, Supersymmetric R 2 actions, conformal invariance and Lorentz Chern-Simons term in six-dimensions and ten-dimensions, Nucl. Phys. B 279 (1987) 659 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E. Bergshoeff and M. Rakowski, An off-shell superspace R 2 action in six-dimensions, Phys. Lett. B 191 (1987) 399 [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    P.C. Argyres, A.M. Awad, G.A. Braun and F.P. Esposito, Higher derivative terms in N = 2 supersymmetric effective actions, JHEP 07 (2003) 060 [hep-th/0306118] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric Completion of an R 2 term in Five-dimensional Supergravity, Prog. Theor. Phys. 117 (2007) 533 [hep-th/0611329] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: Full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    E.A. Bergshoeff, J. Rosseel and E. Sezgin, Off-shell D = 5, N = 2 Riemann Squared Supergravity, Class. Quant. Grav. 28 (2011) 225016 [arXiv:1107.2825] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    H. Lü, C. Pope and E. Sezgin, Massive Three-Dimensional Supergravity From R + R 2 Action in Six Dimensions, JHEP 10 (2010) 016 [arXiv:1007.0173] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001) 3 [hep-th/0007195] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  10. [10]
    S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Black holes in five-dimensional gauged supergravity with higher derivatives, JHEP 12 (2009) 045 [arXiv:0812.3572] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    B. de Wit and S. Katmadas, Near-Horizon Analysis of D = 5 BPS Black Holes and Rings, JHEP 02 (2010) 056 [arXiv:0910.4907] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    J.T. Liu and R. Minasian, Computing 1/N 2 corrections in AdS/CFT, arXiv:1010.6074 [INSPIRE].
  13. [13]
    S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on eta/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [INSPIRE].ADSGoogle Scholar
  14. [14]
    E.A. Bergshoeff, O. Hohm, J. Rosseel, E. Sezgin and P.K. Townsend, More on Massive 3D Supergravity, Class. Quant. Grav. 28 (2011) 015002 [arXiv:1005.3952] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Salam and E. Sezgin, Chiral Compactification on Minkowski × S 2 of N = 2 Einstein-Maxwell Supergravity in Six-Dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    H. Nishino and E. Sezgin, Matter and Gauge Couplings of N = 2 Supergravity in Six-Dimensions, Phys. Lett. B 144 (1984) 187 [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B 505 (1997) 497 [hep-th/9703075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S. Ferrara, F. Riccioni and A. Sagnotti, Tensor and vector multiplets in six-dimensional supergravity, Nucl. Phys. B 519 (1998) 115 [hep-th/9711059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal tensor calculus and matter couplings in six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F. Coomans and A. Van Proeyen, Off-shell N = (1,0), D = 6 supergravity from superconformal methods, JHEP 02 (2011) 049 [arXiv:1101.2403] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G.W. Gibbons, Aspects of supergravity theories, in Supersymmetry, supergravity and related topics, eds. F. del Aguila, J.A. de Azcárraga and L.E. Ibañez, World Scientific Singapore (1985).Google Scholar
  22. [22]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSGoogle Scholar
  23. [23]
    Y. Aghababaie, C. Burgess, S. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6 − D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric black hole entropy, Phys. Lett. B 451 (1999) 309 [hep-th/9812082] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Gibbons and K.-i. Maeda, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, Nucl. Phys. B 298 (1988) 741 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Lü and Y. Pang, On Hybrid (Topologically) Massive Supergravity in Three Dimensions, JHEP 03 (2011) 050 [arXiv:1011.6212] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Eric Bergshoeff
    • 1
  • Frederik Coomans
    • 2
  • Ergin Sezgin
    • 3
  • Antoine Van Proeyen
    • 2
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Instituut voor Theoretische FysicaKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.George and Cynthia Woods Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A

Personalised recommendations