M-brane models from non-abelian gerbes

Article

Abstract

We make the observation that M-brane models defined in terms of 3-algebras can be interpreted as higher gauge theories involving Lie 2-groups. Such gauge theories arise in particular in the description of non-abelian gerbes. This observation allows us to put M2- and M5-brane models on equal footing, at least as far as the gauge structure is concerned. Furthermore, it provides a useful framework for various generalizations; in particular, it leads to a fully supersymmetric generalization of a previously proposed set of tensor multiplet equations.

Keywords

M-Theory Gauge Symmetry Differential and Algebraic Geometry 

References

  1. [1]
    C. Sämann, Constructing self-dual strings, Commun. Math. Phys. 305 (2011) 513 [arXiv:1007.3301] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  2. [2]
    S. Palmer and C. Sämann, Constructing generalized self-dual strings, JHEP 10 (2011) 008 [arXiv:1105.3904] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083 [arXiv:0802.3456] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Basu and J.A. Harvey, The M 2-M 5 brane system and a generalized Nahms equation, Nucl. Phys. B 713 (2005) 136 [hep-th/0412310] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    P.S. Howe, N. Lambert and P.C. West, The Selfdual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    L. Breen and W. Messing, Differential geometry of gerbes, Adv. Math. 198 (2005) 732 [math/0106083] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    P. Aschieri, L. Cantini and B. Jurčo, Nonabelian bundle gerbes, their differential geometry and gauge theory, Commun. Math. Phys. 254 (2005) 367 [hep-th/0312154] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  8. [8]
    J. Bagger and N. Lambert, Three-algebras and N = 6 Chern-Simons gauge theories, Phys. Rev. D 79 (2009) 025002 [arXiv:0807.0163] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    S.A. Cherkis and C. Sämann, Multiple M 2-branes and generalized 3-Lie algebras, Phys. Rev. D 78 (2008) 066019 [arXiv:0807.0808] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P. de Medeiros, J. Figueroa-O’Farrill, E. Mendez-Escobar and P. Ritter, On the Lie-algebraic origin of metric 3-algebras, Commun. Math. Phys. 290 (2009) 871 [arXiv:0809.1086] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  11. [11]
    C. Iuliu-Lazaroiu, D. McNamee, C. Sämann and A. Zejak, Strong homotopy Lie algebras, generalized Nahm equations and multiple M 2-branes, arXiv:0901.3905 [INSPIRE].
  12. [12]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    A. Gustavsson, Algebraic structures on parallel M 2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    P.-M. Ho, K.-W. Huang and Y. Matsuo, A non-abelian self-dual gauge theory in 5 + 1 dimensions, JHEP 07 (2011) 021 [arXiv:1104.4040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    H. Samtleben, E. Sezgin and R. Wimmer, (1, 0) superconformal models in six dimensions, JHEP 12 (2011) 062 [arXiv:1108.4060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    C.-S. Chu, A theory of non-abelian tensor gauge field with non-abelian gauge symmetry G × G, arXiv:1108.5131 [INSPIRE].
  19. [19]
    D. Fiorenza, H. Sati and U. Schreiber, Multiple M5-branes, string 2-connections and 7D nonabelian Chern-Simons theory, arXiv:1201.5277 [INSPIRE].
  20. [20]
    J.C. Baez, Higher Yang-Mills theory, hep-th/0206130 [INSPIRE].
  21. [21]
    J.C. Baez and U. Schreiber, Higher gauge theory, in Categories in algebra, geometry and mathematical physics, A. Davydov et al., American Mathematical Society, U.S.A. (2007), math/0511710 [INSPIRE].
  22. [22]
    J.C. Baez and J. Huerta, An invitation to higher gauge theory, arXiv:1003.4485 [INSPIRE].
  23. [23]
    J.C. Baez and A.S. Crans, Higher-dimensional algebra VI: Lie 2-algebras, Theor. Appl. Categor. 12 (2004) 492 [math/0307263] [INSPIRE].MathSciNetMATHGoogle Scholar
  24. [24]
    V.T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126.MATHGoogle Scholar
  25. [25]
    P.A. Nagy, Prolongations of Lie algebras and applications, arXiv:0712.1398.
  26. [26]
    J.R. Faulkner, On the geometry of inner ideals, J. Algebra 26 (1973) 1.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    J.F. Martins and A. Mikovic, Lie crossed modules and gauge-invariant actions for 2-BF theories, arXiv:1006.0903 [INSPIRE].
  28. [28]
    S. Cherkis, V. Dotsenko and C. Sämann, On superspace actions for multiple M 2-branes, metric 3-algebras and their classification, Phys. Rev. D 79 (2009) 086002 [arXiv:0812.3127] [INSPIRE].ADSGoogle Scholar
  29. [29]
    F. Girelli and H. Pfeiffer, Higher gauge theory: differential versus integral formulation, J. Math. Phys. 45 (2004) 3949 [hep-th/0309173] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    C. Papageorgakis and C. Sämann, The 3-Lie algebra (2, 0) tensor multiplet and equations of motion on loop space, JHEP 05 (2011) 099 [arXiv:1103.6192] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N. Akerblom, C. Sämann and M. Wolf, Marginal deformations and 3-algebra structures, Nucl. Phys. B 826 (2010) 456 [arXiv:0906.1705] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Maxwell Institute for Mathematical SciencesHeriot-Watt UniversityEdinburghU.K.

Personalised recommendations