Locality in theory space

Article

Abstract

Locality is a guiding principle for constructing realistic quantum field theories. Compactified theories offer an interesting context in which to think about locality, since interactions can be nonlocal in the compact directions while still being local in the extended ones. In this paper, we study locality in “theory space”, four-dimensional Lagrangians which are dimensional deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV) completions, one can understand the origin of theory space locality by the irrelevance of nonlocal operators. From an infrared (IR) point of view, though, theory space locality does not appear to be a special property, since the lowest-lying Kaluza- Klein (KK) modes are simply described by a gauged nonlinear sigma model, and locality imposes seemingly arbitrary constraints on the KK spectrum and interactions. We argue that these constraints are nevertheless important from an IR perspective, since they affect the four-dimensional cutoff of the theory where high energy scattering hits strong coupling. Intriguingly, we find that maximizing this cutoff scale implies five-dimensional locality. In this way, theory space locality is correlated with weak coupling in the IR, independent of UV considerations. We briefly comment on other scenarios where maximizing the cutoff scale yields interesting physics, including theory space descriptions of QCD and deconstructions of anti-de Sitter space.

Keywords

Field Theories in Higher Dimensions Technicolor and Composite Models 

References

  1. [1]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  3. [3]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  5. [5]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    I. Heemskerk and J. Sully, More Holography from Conformal Field Theory, JHEP 09 (2010) 099 [arXiv:1006.0976] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    R. Sundrum, From Fixed Points to the Fifth Dimension, arXiv:1106.4501 [INSPIRE].
  9. [9]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, arXiv:1111.6972 [INSPIRE].
  10. [10]
    R.S. Chivukula, D.A. Dicus and H.-J. He, Unitarity of compactified five-dimensional Yang-Mills theory, Phys. Lett. B 525 (2002) 175 [hep-ph/0111016] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    R.S. Chivukula and H.-J. He, Unitarity of deconstructed five-dimensional Yang-Mills theory, Phys. Lett. B 532 (2002) 121 [hep-ph/0201164] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    S. De Curtis, D. Dominici and J.R. Pelaez, Strong tree level unitarity violations in the extra dimensional standard model with scalars in the bulk, Phys. Rev. D 67 (2003) 076010 [hep-ph/0301059] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M.D. Schwartz, Constructing gravitational dimensions, Phys. Rev. D 68 (2003) 024029 [hep-th/0303114] [INSPIRE].ADSGoogle Scholar
  14. [14]
    H. Georgi, Vector Realization of Chiral Symmetry, Nucl. Phys. B 331 (1990) 311 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    H. Abe, T. Kobayashi, N. Maru and K. Yoshioka, Field localization in warped gauge theories, Phys. Rev. D 67 (2003) 045019 [hep-ph/0205344] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    R.S. Chivukula, E.H. Simmons, H.-J. He, M. Kurachi and M. Tanabashi, Deconstruction and Elastic pi pi Scattering in Higgsless Models, Phys. Rev. D 75 (2007) 035005 [hep-ph/0612070] [INSPIRE].ADSGoogle Scholar
  19. [19]
    L. Randall, Y. Shadmi and N. Weiner, Deconstruction and gauge theories in AdS 5, JHEP 01 (2003) 055 [hep-th/0208120] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Falkowski and H.D. Kim, Running of gauge couplings in AdS 5 via deconstruction, JHEP 08 (2002) 052 [hep-ph/0208058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    B.W. Lee, C. Quigg and H. Thacker, The Strength of Weak Interactions at Very High-Energies and the Higgs Boson Mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Chang and H.-J. He, Unitarity of little Higgs models signals new physics of UV completion, Phys. Lett. B 586 (2004) 95 [hep-ph/0311177] [INSPIRE].ADSGoogle Scholar
  27. [27]
    R.N. Cahn and M. Suzuki, The Scalar bound state in nonminimal technicolor: A Surrogate Higgs boson, Phys. Rev. Lett. 67 (1991) 169 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. Son and M. Stephanov, QCD and dimensional deconstruction, Phys. Rev. D 69 (2004) 065020 [hep-ph/0304182] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R.S. Chivukula, M. Kurachi and M. Tanabashi, Generalized Weinberg sum rules in deconstructed QCD, JHEP 06 (2004) 004 [hep-ph/0403112] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Piai, A. Pierce and J.G. Wacker, Composite vector mesons from QCD to the little Higgs, hep-ph/0405242 [INSPIRE].
  31. [31]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [INSPIRE].ADSGoogle Scholar
  32. [32]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020 [hep-ph/0202089] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The Littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    M. Bando, T. Kugo and K. Yamawaki, Nonlinear Realization and Hidden Local Symmetries, Phys. Rept. 164 (1988) 217 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    G. Brown and M. Rho, Chiral symmetry restoration and the Georgi vector limit, Phys. Lett. B 338 (1994) 301 [hep-ph/9408223] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Falkowski, C. Grojean, A. Kaminska, S. Pokorski and A. Weiler, If no Higgs then what?, JHEP 11 (2011) 028 [arXiv:1108.1183] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Kawarabayashi and M. Suzuki, Partially conserved axial vector current and the decays of vector mesons, Phys. Rev. Lett. 16 (1966) 255 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    Riazuddin and Fayyazuddin, Algebra of current components and decay widths of ρ and \(K *\) mesons, Phys. Rev. 147 (1966) 1071 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  41. [41]
    N. Arkani-Hamed and M.D. Schwartz, Discrete gravitational dimensions, Phys. Rev. D 69 (2004) 104001 [hep-th/0302110] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    L. Randall, M.D. Schwartz and S. Thambyahpillai, Discretizing gravity in warped spacetime, JHEP 10 (2005) 110 [hep-th/0507102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    J. Gallicchio and I. Yavin, Curvature as a remedy or discretizing gravity in warped dimensions, JHEP 05 (2006) 079 [hep-th/0507105] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    R.S. Chivukula, M.J. Dugan and M. Golden, Analyticity, crossing symmetry and the limits of chiral perturbation theory, Phys. Rev. D 47 (1993) 2930 [hep-ph/9206222] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations