Top condensation as a motivated explanation of the top forward-backward asymmetry



Models of top condensation can provide both a compelling solution to the hierarchy problem as well as an explanation of why the top-quark mass is large. The spectrum of such models, in particular topcolor-assisted technicolor, includes top-pions, top-rhos and the top-Higgs, all of which can easily have large top-charm or top-up couplings. Large top-up couplings in particular would lead to a top forward-backward asymmetry through t-channel exchange, easily consistent with the Tevatron measurements. Intriguingly, there is destructive interference between the top-mesons and the standard model which conspire to make the overall top pair production rate consistent with the standard model. The rate for same-sign top production is also small due to destructive interference between the neutral top-pion and the top-Higgs. Flavor physics is under control because new physics is mostly confined to the top quark. In this way, top condensation can explain the asymmetry and be consistent with all experimental bounds. There are many additional signatures of topcolor with large tu mixing, such as top(s) + jet(s) events, in which a top and a jet reconstruct a resonance mass, which make these models easily testable at the LHC.


Phenomenological Models Heavy Quark Physics Hadronic Colliders Technicolor and Composite Models 


  1. [1]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [SPIRES].ADSGoogle Scholar
  2. [2]
    CDF collaboration, Measurements of the forward backward asymmetry in top pair production in the dilepton decay channel using 5.1 fb −1 , CDF note 10436 (2011).Google Scholar
  3. [3]
    D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    CDF collaboration, Measurement of the forward-backward asymmetry in top pair production in 3.2fb −1 of \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, CDF note 9724 (2009).Google Scholar
  6. [6]
    P.H. Frampton, J. Shu and K. Wang, Axigluon as possible explanation for \( p\overline p \to t\overline t \) forward-backward asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].ADSGoogle Scholar
  7. [7]
    C. Delaunay et al., Implications of the CDF \( t\overline t \) forward-backward asymmetry for hard top physics, arXiv:1103.2297 [SPIRES].
  8. [8]
    C. Delaunay et al., Ultra visible warped model from flavor triviality and improved naturalness, Phys. Rev. D 83 (2011) 115003 [arXiv:1007.0243] [SPIRES].ADSGoogle Scholar
  9. [9]
    C. Delaunay et al., Extraordinary phenomenology from warped flavor triviality, arXiv:1101.2902 [SPIRES].
  10. [10]
    Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [SPIRES].ADSGoogle Scholar
  12. [12]
    J. Shelton and K.M. Zurek, Maximal flavor violation from new right-handed gauge bosons, Phys. Rev. D 83 (2011) 091701 [arXiv:1101.5392] [SPIRES].ADSGoogle Scholar
  13. [13]
    J. Cao et al., Top quark forward-backward asymmetry at the Tevatron: a comparative study in different new physics models, Phys. Rev. D 81 (2010) 014016 [arXiv:0912.1447] [SPIRES].ADSGoogle Scholar
  14. [14]
    B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in \( t\overline t \) production from flavour symmetries, Phys. Rev. Lett. 107 (2011) 012002 [arXiv:1102.3374] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    Z. Ligeti, M. Schmaltz and G.M. Tavares, Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies, JHEP 06 (2011) 109 [arXiv:1103.2757] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry from a non-Abelian horizontal symmetry, Phys. Rev. D 83 (2011) 114039 [arXiv:1103.4835] [SPIRES].ADSGoogle Scholar
  17. [17]
    A.E. Nelson, T. Okui and T.S. Roy, A unified, flavor symmetric explanation for the XXX asymmetry and Wjj excess at CDF, arXiv:1104.2030 [SPIRES].
  18. [18]
    K.S. Babu, M. Frank and S.K. Rai, Top quark asymmetry and Wjj excess at CDF from gauged flavor symmetry, arXiv:1104.4782 [SPIRES].
  19. [19]
    V.A. Miransky, M. Tanabashi and K. Yamawaki, Dynamical electroweak symmetry breaking with large anomalous dimension and t quark condensate, Phys. Lett. B 221 (1989) 177 [SPIRES].ADSGoogle Scholar
  20. [20]
    V.A. Miransky, M. Tanabashi and K. Yamawaki, Is the t quark responsible for the mass of W and Z bosons?, Mod. Phys. Lett. A4 (1989) 1043 [SPIRES].ADSGoogle Scholar
  21. [21]
    W.A. Bardeen, C.T. Hill and M. Lindner, Minimal dynamical symmetry breaking of the standard model, Phys. Rev. D 41 (1990) 1647 [SPIRES].ADSGoogle Scholar
  22. [22]
    C.T. Hill, Topcolor: top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [SPIRES].ADSGoogle Scholar
  23. [23]
    C.T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345 (1995) 483 [hep-ph/9411426] [SPIRES].ADSGoogle Scholar
  24. [24]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [hep-ph/0203079] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    S. Samuel, Bosonic technicolor, Nucl. Phys. B 347 (1990) 625 [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    R. Sekhar Chivukula, N.D. Christensen, B. Coleppa and E.H. Simmons, The top triangle moose: combining higgsless and topcolor mechanisms for mass generation, Phys. Rev. D 80 (2009) 035011 [arXiv:0906.5567] [SPIRES].ADSGoogle Scholar
  27. [27]
    G. Burdman and D. Kominis, Model-independent constraints on topcolor from R (b), Phys. Lett. B 403 (1997) 101 [hep-ph/9702265] [SPIRES].ADSGoogle Scholar
  28. [28]
    G. Buchalla, G. Burdman, C.T. Hill and D. Kominis, GIM violation and new dynamics of the third generation, Phys. Rev. D 53 (1996) 5185 [hep-ph/9510376] [SPIRES].ADSGoogle Scholar
  29. [29]
    H.-J. He and C.P. Yuan, New method for detecting charged (pseudo-)scalars at colliders, Phys. Rev. Lett. 83 (1999) 28 [hep-ph/9810367] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    G. Burdman, Scalars from top condensation models at hadron colliders, Phys. Rev. Lett. 83 (1999) 2888 [hep-ph/9905347] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    G. Burdman, K.D. Lane and T. Rador, Anti-B B mixing constrains topcolor-assisted technicolor, Phys. Lett. B 514 (2001) 41 [hep-ph/0012073] [SPIRES].ADSGoogle Scholar
  32. [32]
    R.S. Chivukula, A.G. Cohen and K.D. Lane, Aspects of dynamical electroweak symmetry breaking, Nucl. Phys. B 343 (1990) 554 [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    R.S. Chivukula and H. Georgi, Large-N and vacuum alignment in topcolor models, Phys. Rev. D 58 (1998) 075004 [hep-ph/9805478] [SPIRES].ADSGoogle Scholar
  34. [34]
    P.J. Fox, Z. Ligeti, M. Papucci, G. Perez and M.D. Schwartz, Deciphering top flavor violation at the LHC with B factories, Phys. Rev. D 78 (2008) 054008 [arXiv:0704.1482] [SPIRES].ADSGoogle Scholar
  35. [35]
    K. Agashe, M. Papucci, G. Perez and D. Pirjol, Next to minimal flavor violation, hep-ph/0509117 [SPIRES].
  36. [36]
    C.T. Hill and X.-M. Zhang, \( Z \to b\overline b \) versus dynamical electroweak symmetry breaking involving the top quark, Phys. Rev. D 51 (1995) 3563 [hep-ph/9409315] [SPIRES].ADSGoogle Scholar
  37. [37]
    F. Braam, M. Flossdorf, R.S. Chivukula, S. Di Chiara and E.H. Simmons, Hypercharge-universal topcolor, Phys. Rev. D 77 (2008) 055005 [arXiv:0711.1127] [SPIRES].ADSGoogle Scholar
  38. [38]
    J. Shu, T.M.P. Tait and K. Wang, Explorations of the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [SPIRES].ADSGoogle Scholar
  39. [39]
    J.A. Aguilar-Saavedra, M. Perez-Victoria, Probing the Tevatron \( t\overline t \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
  42. [42]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    CDF collaboration, Combination of CDF top quark pair production cross section measurements with 2.8fb −1, CDF note 9448 (2009).Google Scholar
  44. [44]
    CDF collaboration, T. Aaltonen et al., Search for maximal flavor violating scalars in same-charge lepton pairs in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 102 (2009) 041801 [arXiv:0809.4903] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    CDF Collaboration, Search for likr-sign top quark pair production at CDF with 6.1fb −1, CDF note 10466 (2011). Cite Aguilar Saavedra:2011zyGoogle Scholar
  46. [46]
    J.A. Aguilar-Saavedra, M. Perez-Victoria, No like-sign tops at Tevatron: constraints on extended models and implications for the \( t\overline t \) asymmetry, Phys. Lett. B 701 (2011) 93 [arXiv:1104.1385] [SPIRES].ADSGoogle Scholar
  47. [47]
    CDF Collaboration, Search for boosted top quarks in high transverse momentum jets with 5.95 fb −1 of CDF Run II Data, CDF note 10234 (2011).Google Scholar
  48. [48]
    CDF collaboration, T. Aaltonen et al., First search for multijet resonances in \( \sqrt {s} = 1.96 \) TeV \( p\overline p \) collisions, arXiv:1105.2815 [SPIRES].
  49. [49]
    CDF collaboration, T. Aaltonen et al., Invariant mass distribution of jet pairs produced in association with a W boson in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 106 (2011) 171801 [arXiv:1104.0699] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    E.J. Eichten, K. Lane and A. Martin, Technicolor at the Tevatron, arXiv:1104.0976 [SPIRES].
  51. [51]
    E. Eichten and K.D. Lane, Electroweak and flavor dynamics at hadron colliders. 2, in the proceedings of the 1996 DPF/DPB Summer Study on New Directions for High-Energy Physics (Snowmass96), June 25–July 12, Snowmass U.S.A. (1996), hep-ph/9609298 [SPIRES].
  52. [52]
    CMS collaboration, S. Chatrchyan et al., Search for same-sign top-quark pair production at \( \sqrt {s} = 7 \) TeV and limits on flavour changing neutral currents in the top sector, arXiv:1106.2142 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.

Personalised recommendations