Non-perturbative transitions among intersecting-brane vacua

Abstract

We investigate the transmutation of D-branes into Abelian magnetic backgrounds on the world-volume of higher-dimensional branes, within the framework of global models with compact internal dimensions. The phenomenon, T-dual to brane recombination in the intersecting-brane picture, shares some similarities to inverse small-instanton transitions in non-compact spaces, though in this case the Abelian magnetic background is a consequence of the compactness of the internal manifold, and is not ascribed to a zero-size non-Abelian instanton growing to maximal size. We provide details of the transition in various supersymmetric orientifolds and non-supersymmetric tachyon-free vacua with Brane Supersymmetry Breaking, both from brane recombination and from a field theory Higgs mechanism viewpoints.

References

  1. [1]

    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  2. [2]

    M. Cvetič, G. Shiu and A.M. Uranga, Chiral four-dimensional N =1 supersymmetric type IIA orientifolds from intersecting D 6-branes, Nucl. Phys. B 615 (2001) 3 [hep-th/0107166] [SPIRES].

    ADS  Article  Google Scholar 

  3. [3]

    C. Angelantonj, I. Antoniadis, E. Dudas and A. Sagnotti, Type-I strings on magnetised orbifolds and brane transmutation, Phys. Lett. B 489 (2000) 223 [hep-th/0007090] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. [4]

    C. Angelantonj and A. Sagnotti, Type-I vacua and brane transmutation, hep-th/0010279 [SPIRES].

  5. [5]

    R. Rohm, Spontaneous supersymmetry breaking in supersymmetric string theories, Nucl. Phys. B 237 (1984) 553 [SPIRES].

    ADS  Article  Google Scholar 

  6. [6]

    C. Kounnas and M. Porrati, Spontaneous supersymmetry breaking in string theory, Nucl. Phys. B 310 (1988) 355 [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  7. [7]

    I. Antoniadis, C. Bachas, D.C. Lewellen and T.N. Tomaras, On supersymmetry breaking in superstrings, Phys. Lett. B 207 (1988) 441 [SPIRES].

    ADS  Google Scholar 

  8. [8]

    S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner, Superstrings with spontaneously broken supersymmetry and their effective theories, Nucl. Phys. B 318 (1989) 75 [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  9. [9]

    C. Kounnas and B. Rostand, Coordinate dependent compactifications and discrete symmetries, Nucl. Phys. B 341 (1990) 641 [SPIRES].

    ADS  Article  Google Scholar 

  10. [10]

    I. Antoniadis, A possible new dimension at a few TeV , Phys. Lett. B 246 (1990) 377 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. [11]

    E. Kiritsis and C. Kounnas, Perturbative and non-perturbative partial supersymmetry breaking: N =4 → N =2 → N = 1, Nucl. Phys. B 503 (1997) 117 [hep-th/9703059] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  12. [12]

    A. Sagnotti, Surprises in open-string perturbation theory, Nucl. Phys. Proc. Suppl. 56B (1997) 332 [hep-th/9702093] [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  13. [13]

    C. Angelantonj, Non-tachyonic open descendants of the 0B string theory, Phys. Lett. B 444 (1998) 309 [hep-th/9810214] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. [14]

    J.D. Blum and K.R. Dienes, Strong/weak coupling duality relations for non-supersymmetric string theories, Nucl. Phys. B 516 (1998) 83 [hep-th/9707160] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  15. [15]

    I. Antoniadis, E. Dudas and A. Sagnotti, Supersymmetry breaking, open strings and M-theory, Nucl. Phys. B 544 (1999) 469 [hep-th/9807011] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  16. [16]

    I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Partial breaking of supersymmetry, open strings and M-theory, Nucl. Phys. B 553 (1999) 133 [hep-th/9812118] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  17. [17]

    C. Angelantonj, I. Antoniadis and K. Forger, Non-supersymmetric type-I strings with zero vacuum energy, Nucl. Phys. B 555 (1999) 116 [hep-th/9904092] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  18. [18]

    C. Bachas, A way to break supersymmetry, hep-th/9503030 [SPIRES].

  19. [19]

    M. Berkooz, M.R. Douglas and R.G. Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996) 265 [hep-th/9606139] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  20. [20]

    R. Blumenhagen, L. Görlich, B. Körs and D. Lüst, Noncommutative compactifications of type-I strings on tori with magnetic background flux, JHEP 10 (2000) 006 [hep-th/0007024] [SPIRES].

    ADS  Article  Google Scholar 

  21. [21]

    G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, Intersecting brane worlds, JHEP 02 (2001) 047 [hep-ph/0011132] [SPIRES].

    ADS  Article  Google Scholar 

  22. [22]

    M. Cvetič, G. Shiu and A.M. Uranga, Three-family supersymmetric standard like models from intersecting brane worlds, Phys. Rev. Lett. 87 (2001) 201801 [hep-th/0107143] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  23. [23]

    F.G. Marchesano Buznego, Intersecting D-brane models, hep-th/0307252 [SPIRES].

  24. [24]

    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [SPIRES].

    ADS  Article  Google Scholar 

  25. [25]

    M. Larosa and G. Pradisi, Magnetized four-dimensional Z 2 × Z 2 orientifolds, Nucl. Phys. B 667 (2003) 261 [hep-th/0305224] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  26. [26]

    S. Sugimoto, Anomaly cancellations in type-I D9-D9-bar system and the USp(32) string theory, Prog. Theor. Phys. 102 (1999) 685 [hep-th/9905159] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  27. [27]

    I. Antoniadis, E. Dudas and A. Sagnotti, Brane supersymmetry breaking, Phys. Lett. B 464 (1999) 38 [hep-th/9908023] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. [28]

    C. Angelantonj, Comments on open-string orbifolds with a non-vanishing B ab , Nucl. Phys. B 566 (2000) 126 [hep-th/9908064] [SPIRES].

    MathSciNet  Article  Google Scholar 

  29. [29]

    G. Aldazabal and A.M. Uranga, Tachyon-free non-supersymmetric type IIB orientifolds via brane-antibrane systems, JHEP 10 (1999) 024 [hep-th/9908072] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  30. [30]

    C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Type I vacua with brane supersymmetry breaking, Nucl. Phys. B 572 (2000) 36 [hep-th/9911081] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  31. [31]

    C. Angelantonj and I. Antoniadis, Suppressing the cosmological constant in non-supersymmetric type-I strings, Nucl. Phys. B 676 (2004) 129 [hep-th/0307254] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  32. [32]

    C. Angelantonj, M. Cardella and N. Irges, Scherk-Schwarz breaking and intersecting branes, Nucl. Phys. B 725 (2005) 115 [hep-th/0503179] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  33. [33]

    E. Dudas and J. Mourad, Consistent gravitino couplings in non-supersymmetric strings, Phys. Lett. B 514 (2001) 173 [hep-th/0012071] [SPIRES].

    ADS  Google Scholar 

  34. [34]

    G. Pradisi and F. Riccioni, Geometric couplings and brane supersymmetry breaking, Nucl. Phys. B 615 (2001) 33 [hep-th/0107090] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  35. [35]

    A. Sen, Tachyon condensation on the brane antibrane system, JHEP 08 (1998) 012 [hep-th/9805170] [SPIRES].

    ADS  Article  Google Scholar 

  36. [36]

    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [SPIRES].

    ADS  Google Scholar 

  37. [37]

    C. Angelantonj, R. Blumenhagen and M.R. Gaberdiel, Asymmetric orientifolds, brane supersymmetry breaking and non-BPS branes, Nucl. Phys. B 589 (2000) 545 [hep-th/0006033] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  38. [38]

    C. Angelantonj and E. Dudas, Metastable string vacua, Phys. Lett. B 651 (2007) 239 [arXiv:0704.2553] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. [39]

    E. Dudas and C. Timirgaziu, Internal magnetic fields and supersymmetry in orientifolds, Nucl. Phys. B 716 (2005) 65 [hep-th/0502085] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  40. [40]

    R. Blumenhagen, M. Cvetič, F. Marchesano and G. Shiu, Chiral D-brane models with frozen open string moduli, JHEP 03 (2005) 050 [hep-th/0502095] [SPIRES].

    ADS  Article  Google Scholar 

  41. [41]

    F. Marchesano and G. Shiu, Building MSSM flux vacua, JHEP 11 (2004) 041 [hep-th/0409132] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  42. [42]

    S. Förste and I. Zavala, Oddness from rigidness, JHEP 07 (2008) 086 [arXiv:0806.2328] [SPIRES].

    Article  Google Scholar 

  43. [43]

    S. Förste and G. Honecker, Rigid D 6-branes on T 6 /(Z 2 × Z 2M  × ΩR) with discrete torsion, JHEP 01 (2011) 091 [arXiv:1010.6070] [SPIRES].

    Article  Google Scholar 

  44. [44]

    R. Blumenhagen, V. Braun, B. Körs and D. Lüst, Orientifolds of K3 and Calabi-Yau manifolds with intersecting D-branes, JHEP 07 (2002) 026 [hep-th/0206038] [SPIRES].

    ADS  Article  Google Scholar 

  45. [45]

    M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B 247 (1990) 517 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. [46]

    E.G. Gimon and J. Polchinski, Consistency conditions for orientifolds and D-manifolds, Phys. Rev. D 54 (1996) 1667 [hep-th/9601038] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. [47]

    D. Cremades, L.E. Ibáñez and F. Marchesano, Intersecting brane models of particle physics and the Higgs mechanism, JHEP 07 (2002) 022 [hep-th/0203160] [SPIRES].

    ADS  Article  Google Scholar 

  48. [48]

    C. Angelantonj and R. Blumenhagen, Discrete deformations in type-I vacua, Phys. Lett. B 473 (2000) 86 [hep-th/9911190] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. [49]

    C. Vafa and E. Witten, On orbifolds with discrete torsion, J. Geom. Phys. 15 (1995) 189 [hep-th/9409188] [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  50. [50]

    C. Angelantonj, C. Condeescu, E. Dudas and M. Lennek, Stringy instanton effects in models with rigid magnetised D-branes, Nucl. Phys. B 818 (2009) 52 [arXiv:0902.1694] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  51. [51]

    C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [hep-th/0204089] [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  52. [52]

    E. Dudas, Theory and phenomenology of type-I strings and M-theory, Class. Quant. Grav. 17 (2000) R41 [hep-ph/0006190] [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  53. [53]

    P.G. Camara, C. Condeescu, E. Dudas and M. Lennek, Non-perturbative vacuum destabilization and D-brane dynamics, JHEP 06 (2010) 062 [arXiv:1003.5805] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  54. [54]

    A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, in The many faces of the superworld, M.A. Shifman ed., World Scientific, Singapore (1999) 417 [hep-th/9908105] [SPIRES].

  55. [55]

    P. Anastasopoulos, I. Antoniadis, K. Benakli, M.D. Goodsell and A. Vichi, One-loop adjoint masses for non-supersymmetric intersecting branes, arXiv:1105.0591 [SPIRES].

  56. [56]

    E. Dudas, G. Pradisi, M. Nicolosi and A. Sagnotti, On tadpoles and vacuum redefinitions in string theory, Nucl. Phys. B 708 (2005) 3 [hep-th/0410101] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  57. [57]

    N. Marcus, A. Sagnotti and W. Siegel, Ten-dimensional supersymmetric Yang-Mills theory in terms of four-dimensional superfields, Nucl. Phys. B 224 (1983) 159 [SPIRES].

    ADS  Article  Google Scholar 

  58. [58]

    N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  59. [59]

    N. Nekrasov and A.S. Schwarz, Instantons on noncommutative R 4 and (2,0) superconformal six dimensional theory, Commun. Math. Phys. 198 (1998) 689 [hep-th/9802068] [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  60. [60]

    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  61. [61]

    S. Terashima, U(1) instanton in Born-Infeld action and noncommutative gauge theory, Phys. Lett. B 477 (2000) 292 [hep-th/9911245] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. [62]

    M. Mariño, R. Minasian, G.W. Moore and A. Strominger, Nonlinear instantons from supersymmetric p-branes, JHEP 01 (2000) 005 [hep-th/9911206] [SPIRES].

    ADS  Article  Google Scholar 

  63. [63]

    M. Billó, M. Frau, S. Sciuto, G. Vallone and A. Lerda, Non-commutative (D)-instantons, JHEP 05 (2006) 069 [hep-th/0511036] [SPIRES].

    ADS  Article  Google Scholar 

  64. [64]

    A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlo Angelantonj.

Additional information

On leave of absence from the Institute of Mathematics ‘Simion Stoilow’ of the Romanian Academy, P.O. Box 1–764, Bucharest, RO-70700, Romania

ArXiv ePrint:1105.3465

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Angelantonj, C., Condeescu, C., Dudas, E. et al. Non-perturbative transitions among intersecting-brane vacua. J. High Energ. Phys. 2011, 123 (2011). https://doi.org/10.1007/JHEP07(2011)123

Download citation

Keywords

  • Intersecting branes models
  • D-branes
  • Superstring Vacua