A parton shower for High Energy Jets

  • Jeppe R. Andersen
  • Leif Lönnblad
  • Jennifer M. Smillie
Open Access


We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.


Jets Phenomenological Models Hadronic Colliders QCD 


  1. [1]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  2. [2]
    G. Marchesini and B.R. Webber, Monte Carlo simulation of general hard processes with coherent QCD radiation, Nucl. Phys. B 310 (1988) 461 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    M. Bähr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\bar{b} + n \) jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    H. Jung and G.P. Salam, Hadronic final state predictions from CCFM: the hadron-level Monte Carlo generator CASCADE, Eur. Phys. J. C 19 (2001) 351 [hep-ph/0012143] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    H. Jung et al., The CCFM Monte Carlo generator CASCADE 2.2.0, Eur. Phys. J. C 70 (2010) 1237 [arXiv:1008.0152] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    M. Ciafaloni, Coherence effects in initial jets at small Q 2 /s, Nucl. Phys. B 296 (1988) 49 [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    S. Catani, F. Fiorani and G. Marchesini, QCD coherence in initial state radiation, Phys. Lett. B 234 (1990) 339 [SPIRES].ADSGoogle Scholar
  12. [12]
    S. Catani, F. Fiorani and G. Marchesini, Small x behavior of initial state radiation in perturbative QCD, Nucl. Phys. B 336 (1990) 18 [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    G. Marchesini, QCD coherence in the structure function and associated distributions at small x, Nucl. Phys. B 445 (1995) 49 [hep-ph/9412327] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    G. Gustafson, Dual description of a confined color field, Phys. Lett. B 175 (1986) 453 [SPIRES].ADSGoogle Scholar
  15. [15]
    G. Gustafson and U. Pettersson, Dipole formulation of QCD cascades, Nucl. Phys. B 306 (1988) 746 [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    B. Andersson, G. Gustafson, L. Lönnblad and U. Pettersson, Coherence effects in deep inelastic scattering, Z. Phys. C 43 (1989) 625 [SPIRES].ADSGoogle Scholar
  17. [17]
    L. Lönnblad, Rapidity gaps and other final state properties in the color dipole model for deep inelastic scattering, Z. Phys. C 65 (1995) 285 [SPIRES].ADSGoogle Scholar
  18. [18]
    J.R. Andersen and J.M. Smillie, Constructing all-order corrections to multi-jet rates, JHEP 01 (2010) 039 [arXiv:0908.2786] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    J.R. Andersen and J.M. Smillie, The factorisation of the t-channel pole in quark-gluon scattering, Phys. Rev. D 81 (2010) 114021 [arXiv:0910.5113] [SPIRES].ADSGoogle Scholar
  20. [20]
    J.R. Andersen and J.M. Smillie, Multiple jets at the LHC with high energy jets, JHEP 06 (2011) 010 [arXiv:1101.5394] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [SPIRES].ADSGoogle Scholar
  22. [22]
    T. Sjöstrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  23. [23]
    T. Sjöstrand, L. Lönnblad, S. Mrenna and P.Z. Skands, PYTHIA 6.3 physics and manual, hep-ph/0308153 [SPIRES].
  24. [24]
    V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk singularity in asymptotically free theories, Phys. Lett. B 60 (1975) 50 [SPIRES].ADSGoogle Scholar
  25. [25]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [SPIRES].ADSGoogle Scholar
  26. [26]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [SPIRES].Google Scholar
  28. [28]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    V. Del Duca, Parke-Taylor amplitudes in the multi-Regge kinematics, Phys. Rev. D 48 (1993) 5133 [hep-ph/9304259] [SPIRES].ADSGoogle Scholar
  31. [31]
    V. Del Duca, Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in the high-energy limit, Phys. Rev. D 52 (1995) 1527 [hep-ph/9503340] [SPIRES].ADSGoogle Scholar
  32. [32]
    E. Boos et al., Generic user process interface for event generators, hep-ph/0109068 [SPIRES].
  33. [33]
    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press, Cambridge U.K. (1996).CrossRefGoogle Scholar
  34. [34]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    J.R. Andersen, V. Del Duca and C.D. White, Higgs boson production in association with multiple hard jets, JHEP 02 (2009) 015 [arXiv:0808.3696] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    J.R. Andersen and W.J. Stirling, Energy consumption and jet multiplicity from the leading log BFKL evolution, JHEP 02 (2003) 018 [hep-ph/0301081] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    J.R. Andersen and J.M. Smillie, High energy description of processes with multiple hard jets, Nucl. Phys. Proc. Suppl. 205-206 (2010) 205 [arXiv:1007.4449] [SPIRES].CrossRefGoogle Scholar
  38. [38]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    ATLAS collaboration, G. Aad et al., Study of jet shapes in inclusive jet production in pp collisions at \( \sqrt {s} = 7 \) TeV using the ATLAS detector, Phys. Rev. D 83 (2011) 052003 [arXiv:1101.0070] [SPIRES].ADSGoogle Scholar
  40. [40]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [SPIRES].ADSGoogle Scholar
  42. [42]
    N. Lavesson and L. Lönnblad, Merging parton showers and matrix elements — Back to basics, JHEP 04 (2008) 085 [arXiv:0712.2966] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    M. Mangano, The so-called mlm prescription for me/ps matching, talk presented at the Fermilab ME/MC Tuning Workshop, October 4, Fermilab, U.S.A. (2002),
  44. [44]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    ATLAS collaboration, Measurement of dijet production with a jet veto in pp collisions at \( \sqrt {s} = 7 \) TeV using the ATLAS detector, ATLAS-CONF-2010-085.
  46. [46]
    J.R. Andersen and A. SabioVera, Solving the BFKL equation in the next-to-leading approximation, Phys. Lett. B 567 (2003) 116 [hep-ph/0305236] [SPIRES].MathSciNetADSGoogle Scholar
  47. [47]
    J.R. Andersen and A. SabioVera, The gluon Green’s function in the BFKL approach at next-to-leading logarithmic accuracy, Nucl. Phys. B 679 (2004) 345 [hep-ph/0309331] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [SPIRES].CrossRefGoogle Scholar
  49. [49]
    L. Lönnblad and S. Prestel, Matching tree-level matrix elements with interleaved showers, Preprint in preparation.Google Scholar
  50. [50]
    B. Andersson, G. Gustafson and J. Samuelsson, The linked dipole chain model for DIS, Nucl. Phys. B 467 (1996) 443 [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    G.P. Salam, Soft emissions and the equivalence of BFKL and CCFM final states, JHEP 03 (1999) 009 [hep-ph/9902324] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    H. Kharraziha and L. Lönnblad, The linked dipole chain Monte Carlo, JHEP 03 (1998) 006 [hep-ph/9709424] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    C. Flensburg, G. Gustafson and L. Lönnblad, Inclusive and exclusive observables from dipoles in high energy collisions, arXiv:1103.4321 [SPIRES].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Jeppe R. Andersen
    • 1
  • Leif Lönnblad
    • 2
    • 3
  • Jennifer M. Smillie
    • 4
  1. 1.CP3-OriginsUniversity of Southern DenmarkOdense MDenmark
  2. 2.CERN Theory DepartmentGenevaSwitzerland
  3. 3.Dept. of Astronomy and Theoretical PhysicsLund UniversityLundSweden
  4. 4.School of Physics and AstronomyUniversity of EdinburghEdinburghUK

Personalised recommendations