Advertisement

Neutrino mass and μ → e + γ from a mini-seesaw

  • Michael Duerr
  • Damien P. George
  • Kristian L. McDonald
Open Access
Article

Abstract

The recently proposed “mini-seesaw mechanism” combines naturally suppressed Dirac and Majorana masses to achieve light Standard Model neutrinos via a low-scale seesaw. A key feature of this approach is the presence of multiple light (order GeV) sterile-neutrinos that mix with the Standard Model. In this work we study the bounds on these light sterile-neutrinos from processes like μ → e + γ, invisible Z-decays, and neutrino-less double beta-decay. We show that viable parameter space exists and that, interestingly, key observables can lie just below current experimental sensitivities. In particular, a motivated region of parameter space predicts a μ → e + γ branching fraction within the range to be probed by MEG.

Keywords

Phenomenology of Field Theories in Higher Dimensions 

References

  1. [1]
    J.W.F. Valle, Status of neutrino theory, arXiv:1001.5189 [SPIRES].
  2. [2]
    A. Strumia and F. Vissani, Neutrino masses and mixings and…, hep-ph/0606054 [SPIRES].
  3. [3]
    R.N. Mohapatra and A.Y. Smirnov, Neutrino mass and new physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    R.N. Mohapatra et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    G. Altarelli and F. Feruglio, Models of neutrino masses and mixings, New J. Phys. 6 (2004) 106 [hep-ph/0405048] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    S.F. King, Neutrino mass models, Rept. Prog. Phys. 67 (2004) 107 [hep-ph/0310204] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    T. Schwetz, M. Tortola and J.W.F. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the “Workshop on the Unified Theory and the Baryon Number in the Universe”, Tsukuba Japan, February 13–14 1979, O. Sawada and A. Sugamoto eds., KEK report KEK-79-18, pg. 95 [SPIRES].
  9. [9]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedom and P. van Nieuwenhuizen eds., North-Holland, Amsterdam The Netherlands (1979) [CERN Print-80-0576] [SPIRES].Google Scholar
  11. [11]
    P. Minkowski, μ → eγ atarateofoneoutof 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  12. [12]
    S.L. Glashow, The future of elementary particle physics, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons, M. Lévy et al. eds., Plenum Press, New York U.S.A. (1980), pg. 687 [SPIRES].Google Scholar
  13. [13]
    R.N. Mohapatra and G. Senjanovic, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    K.S. Babu, Model of ‘calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [SPIRES].ADSGoogle Scholar
  16. [16]
    K.A. Meissner and H. Nicolai, Conformal symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [SPIRES].ADSGoogle Scholar
  18. [18]
    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [SPIRES].ADSGoogle Scholar
  19. [19]
    S. Iso, N. Okada and Y. Orikasa, Classically conformal B-L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [SPIRES].ADSGoogle Scholar
  20. [20]
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali and J. March-Russell, Neutrino masses from large extra dimensions, Phys. Rev. D 65 (2002) 024032 [hep-ph/9811448] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    K.R. Dienes, E. Dudas and T. Gherghetta, Light neutrinos without heavy mass scales: a higher-dimensional seesaw mechanism, Nucl. Phys. B 557 (1999) 25 [hep-ph/9811428] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    N. Arkani-Hamed and Y. Grossman, Light active and sterile neutrinos from compositeness, Phys. Lett. B 459 (1999) 179 [hep-ph/9806223] [SPIRES].ADSGoogle Scholar
  23. [23]
    T. Okui, Searching for composite neutrinos in the cosmic microwave background, JHEP 09 (2005) 017 [hep-ph/0405083] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Grossman and Y. Tsai, Leptogenesis with composite neutrinos, JHEP 12 (2008) 016 [arXiv:0811.0871] [SPIRES].ADSGoogle Scholar
  25. [25]
    Y. Grossman and D.J. Robinson, Composite Dirac neutrinos, JHEP 01 (2011) 132 [arXiv:1009.2781] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    R.S. Hundi and S. Roy, Constraints on composite Dirac neutrinos from observations of galaxy clusters, arXiv:1105.0291 [SPIRES].
  27. [27]
    K.L. McDonald, Light neutrinos from a mini-seesaw mechanism in warped space, Phys. Lett. B 696 (2011) 266 [arXiv:1010.2659] [SPIRES].ADSGoogle Scholar
  28. [28]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetzbMATHGoogle Scholar
  31. [31]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    R. Sawada, Analysis of the MEG experiment to search for μ + → e + γ decays, PoS(ICHEP 2010)263 [SPIRES].
  34. [34]
    G. Cavoto, Recent MEG results, arXiv:1012.2110 [SPIRES].
  35. [35]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. [36]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [SPIRES].ADSGoogle Scholar
  39. [39]
    S.J. Huber and Q. Shafi, Majorana neutrinos in a warped 5D standard model, Phys. Lett. B 544 (2002) 295 [hep-ph/0205327] [SPIRES].ADSGoogle Scholar
  40. [40]
    S.J. Huber and Q. Shafi, Seesaw mechanism in warped geometry, Phys. Lett. B 583 (2004) 293 [hep-ph/0309252] [SPIRES].ADSGoogle Scholar
  41. [41]
    T. Gherghetta, Dirac neutrino masses with Planck scale lepton number violation, Phys. Rev. Lett. 92 (2004) 161601 [hep-ph/0312392] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    B. Gripaios, Neutrinos in a sterile throat, Nucl. Phys. B 768 (2007) 157 [Erratum ibid. 830 (2010) 390] [hep-ph/0611218] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    T. Gherghetta, K. Kadota and M. Yamaguchi, W arped leptogenesis with Dirac neutrino masses, Phys. Rev. D 76 (2007) 023516 [arXiv:0705.1749] [SPIRES].ADSGoogle Scholar
  44. [44]
    G. Perez and L. Randall, Natural neutrino masses and mixings from warped geometry, JHEP 01 (2009) 077 [arXiv:0805.4652] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A model of lepton masses from a warped extra dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    F. del Aguila, A. Carmona and J. Santiago, Neutrino masses from an A 4 symmetry in holographic composite Higgs models, JHEP 08 (2010) 127 [arXiv:1001.5151] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    A. Kadosh and E. Pallante, An A 4 flavor model for quarks and leptons in warped geometry, JHEP 08 (2010) 115 [arXiv:1004.0321] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    A. Watanabe and K. Yoshioka, Seesaw in the bulk, Prog. Theor. Phys. 125 (2011) 129 [arXiv:1007.1527] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  49. [49]
    G. von Gersdorff and M. Quirós, Conformal neutrinos: an alternative to the see-saw mechanism, Phys. Lett. B 678 (2009) 317 [arXiv:0901.0006] [SPIRES].ADSGoogle Scholar
  50. [50]
    T. Flacke and D. Maybury, Aspects of axion phenomenology in a slice of AdS 5, JHEP 03 (2007) 007 [hep-ph/0612126] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    K.L. McDonald and D.E. Morrissey, Low-energy probes of a warped extra dimension, JHEP 05 (2010) 056 [arXiv:1002.3361] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    K.L. McDonald and D.E. Morrissey, Low-energy signals from kinetic mixing with a warped Abelian hidden sector, JHEP 02 (2011) 087 [arXiv:1010.5999] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    H. Pas, S. Pakvasa and T.J. Weiler, Sterile-active neutrino oscillations and shortcuts in the extra dimension, Phys. Rev. D 72 (2005) 095017 [hep-ph/0504096] [SPIRES].ADSGoogle Scholar
  54. [54]
    T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [SPIRES].ADSGoogle Scholar
  55. [55]
    T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [SPIRES].ADSGoogle Scholar
  56. [56]
    D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015 [arXiv:0705.1729] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    T. Asaka, S. Eijima and H. Ishida, Mixing of active and sterile neutrinos, JHEP 04 (2011) 011 [aXiv:1101.1382] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    A. de Gouvea, GeV seesaw, accidentally small neutrino masses, and Higgs decays to neutrinos, arXiv:0706.1732 [SPIRES].
  59. [59]
    A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    A. Ioannisian and A. Pilaftsis, Cumulative non-decoupling effects of Kaluza-Klein neutrinos in electroweak processes, Phys. Rev. D 62 (2000) 066001 [hep-ph/9907522] [SPIRES].ADSGoogle Scholar
  61. [61]
    T. Fukuyama and N. Okada, Recent MEG results and predictive SO(10) models, arXiv:1104.1736 [SPIRES].
  62. [62]
    A. Ibarra and C. Simonetto, Constraints on the rare τ decays from μ → eγ in the supersymmetric see-saw model, JHEP 04 (2008) 102 [arXiv:0802.3858] [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, μ → eγ and τ → ℓγ decays in the fermion triplet seesaw model, Phys. Rev. D 78 (2008) 033007 [arXiv:0803.0481] [SPIRES].ADSGoogle Scholar
  64. [64]
    D. Suematsu, T. Toma and T. Yoshida, Reconciliation of CDM abundance and μ → eγ ina radiative seesaw model, Phys. Rev. D 79 (2009) 093004 [arXiv:0903.0287] [SPIRES].ADSGoogle Scholar
  65. [65]
    J. Hisano, M. Nagai, P. Paradisi and Y. Shimizu, W aiting for μ → eγ from the MEG experiment, JHEP 12 (2009) 030 [arXiv:0904.2080] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    S. Blanchet, T. Hambye and F.-X. Josse-Michaux, Reconciling leptogenesis with observable μ → eγ rates, JHEP 04 (2010) 023 [arXiv:0912.3153] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    M. Davidkov and D.I. Kazakov, μ → e + γ decay rate in the MSSM with minimal flavour violation, arXiv:1102.1582 [SPIRES].
  68. [68]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    J. Garriga and A. Pomarol, A stable hierarchy from Casimir forces and the holographic interpretation, Phys. Lett. B 560 (2003) 91 [hep-th/0212227] [SPIRES].MathSciNetADSGoogle Scholar
  70. [70]
    H. Davoudiasl, G. Perez and A. Soni, The little Randall-Sundrum model at the Large Hadron Collider, Phys. Lett. B 665 (2008) 67 [arXiv:0802.0203] [SPIRES].ADSGoogle Scholar
  71. [71]
    H. Davoudiasl, T. McElmurry and A. Soni, Promising diphoton signals of the little radion at hadron colliders, Phys. Rev. D 82 (2010) 115028 [arXiv:1009.0764] [SPIRES].ADSGoogle Scholar
  72. [72]
    B. Batell and T. Gherghetta, Holographic mixing quantified, Phys. Rev. D 76 (2007) 045017 [arXiv:0706.0890] [SPIRES].MathSciNetADSGoogle Scholar
  73. [73]
    A. Watanabe and K. Yoshioka, Geometry-free neutrino masses in curved spacetime, Phys. Lett. B 683 (2010) 289 [arXiv:0910.0677] [SPIRES].ADSGoogle Scholar
  74. [74]
    A. Watanabe, private communication.Google Scholar
  75. [75]
    W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475 (2000) 275 [hep-ph/9911457] [SPIRES].ADSGoogle Scholar
  76. [76]
    C. Charmousis, R. Gregory and V.A. Rubakov, W ave function of the radion in a brane world, Phys. Rev. D 62 (2000) 067505 [hep-th/9912160] [SPIRES].MathSciNetADSGoogle Scholar
  77. [77]
    M.S. Carena, J.D. Lykken and M. Park, The interval approach to braneworld gravity, Phys. Rev. D 72 (2005) 084017 [hep-ph/0506305] [SPIRES].MathSciNetADSGoogle Scholar
  78. [78]
    W. Rodejohann, Neutrinoless double beta decay in particle physics, arXiv:1011. 4942 [SPIRES].
  79. [79]
    H.V. Klapdor-Kleingrothaus and H. Pas, Neutrinoless double beta decay and new physics in the neutrino sector, hep-ph/0002109 [SPIRES].
  80. [80]
    A. Dueck, W. Rodejohann and K. Zuber, Neutrinoless double beta decay, the inverted hierarchy and precision determination of θ 12, Phys. Rev. D 83 (2011) 113010 [arXiv:1103.4152] [SPIRES].ADSGoogle Scholar
  81. [81]
    M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [SPIRES].ADSCrossRefGoogle Scholar
  82. [82]
    M. Gronau, C.N. Leung and J.L. Rosner, Extending limits on neutral heavy leptons, Phys. Rev. D 29 (1984) 2539 [SPIRES].ADSGoogle Scholar
  83. [83]
    M. Gronau and J.L. Rosner, Events with jet + (missing energy) as pairs of new neutral leptons, Phys. Lett. B 147 (1984) 217 [SPIRES].ADSGoogle Scholar
  84. [84]
    M. Dittmar, A. Santamaria, M.C. Gonzalez-Garcia and J.W.F. Valle, Production mechanisms and signatures of isosinglet neutral heavy leptons in Z 0 decays, Nucl. Phys. B 332 (1990) 1 [SPIRES].ADSCrossRefGoogle Scholar
  85. [85]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  86. [86]
    A.Y. Smirnov and R. Zukanovich Funchal, Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos, Phys. Rev. D 74 (2006) 013001 [hep-ph/0603009] [SPIRES].ADSGoogle Scholar
  87. [87]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [SPIRES].ADSGoogle Scholar
  88. [88]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [SPIRES].ADSCrossRefGoogle Scholar
  89. [89]
    D.I. Britton et al., Measurement of the π + → e + ν branching ratio, Phys. Rev. Lett. 68 (1992) 3000 [SPIRES].ADSCrossRefGoogle Scholar
  90. [90]
    D.I. Britton et al., Improved search for massive neutrinos in π + → e + ν decay, Phys. Rev. D 46 (1992) 885 [SPIRES].ADSGoogle Scholar
  91. [91]
    D. Berghofer et al., Constraints on possible heavy neutrino states from the π +e electron-neutrino decay, in Proc. Inern. Conf. on Neutrino Physics and Astrophysics, Maui Hawaii U.S.A. July 1–8 1981, R.J. Cence, E. Ma and A. Roberts eds., volume II, University of Hawaii, Honolulu U.S.A. (1981), pg. 67 [SPIRES].Google Scholar
  92. [92]
    T. Yamazaki et al., Search for heavy neutrinos in kaon decay, in Proc. 22nd Intern. Conf. on High Energy Physics, Leipzig Germany 1984, A. Meyer and E. Wierczorek eds., volume I, Akademieder Wiessenachaften der DDR, Leipzig Germany (1984), pg. 262 [SPIRES].Google Scholar
  93. [93]
    E. Nardi, E. Roulet and D. Tommasini, Limits on neutrino mixing with new heavy particles, Phys. Lett. B 327 (1994) 319 [hep-ph/9402224] [SPIRES].ADSGoogle Scholar
  94. [94]
    L3 collaboration, O. Adriani et al., Search for isosinglet neutral heavy leptons in Z 0 decays, Phys. Lett. B 295 (1992) 371 [SPIRES].ADSGoogle Scholar
  95. [95]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phenomenology of the Randall-Sundrum gauge hierarchy model, Phys. Rev. Lett. 84 (2000) 2080 [hep-ph/9909255] [SPIRES].ADSCrossRefGoogle Scholar
  96. [96]
    WA66 collaboration, A.M. Cooper-Sarkar et al., Search for heavy neutrino decays in the BEBC beam dump experiment, Phys. Lett. B 160 (1985) 207 [SPIRES].ADSGoogle Scholar
  97. [97]
    D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog, Non-decoupling of heavy neutrinos and lepton flavour violation, Nucl. Phys. B 444 (1995) 451 [hep-ph/9503228] [SPIRES].ADSCrossRefGoogle Scholar
  98. [98]
    E. Ma and A. Pramudita, Exact formula for (μ → eγ) type processes in the Standard Model, Phys. Rev. D 24 (1981) 1410 [SPIRES].ADSGoogle Scholar
  99. [99]
    P. Langacker and D. London, Mixing between ordinary and exotic fermions, Phys. Rev. D 38 (1988) 886 [SPIRES].ADSGoogle Scholar
  100. [100]
    MEGA collaboration, M.L. Brooks et al., New limit for the family-number non-conserving decay μ + → e + γ, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].ADSCrossRefGoogle Scholar
  101. [101]
    SINDRUM II collaboration, C. Dohmen et al., Test of lepton flavor conservation in μ → e conversion on titanium, Phys. Lett. B 317 (1993) 631 [SPIRES].ADSGoogle Scholar
  102. [102]
    O.J.P. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett. B 495 (2000) 147 [hep-ph/0009158] [SPIRES].ADSGoogle Scholar
  103. [103]
    F. Richard and P. Bambade, Strategy to measure the Higgs mass, width and invisible decays at ILC, hep-ph/0703173 [SPIRES].
  104. [104]
    J.-H. Chen, X.-G. He, J. Tandean and L.-H. Tsai, Effect on Higgs boson decays from large light-heavy neutrino mixing in seesaw models, Phys. Rev. D 81 (2010) 113004 [arXiv:1001.5215] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Michael Duerr
    • 1
  • Damien P. George
    • 2
  • Kristian L. McDonald
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Nikhef Theory GroupAmsterdamThe Netherlands

Personalised recommendations