Advertisement

The KK-monopole/NS5-brane in doubled geometry

  • Steuard Jensen
Article

Abstract

The Kaluza-Klein monopole has been recognized as a string background with significant non-geometric features: it must appear “localized” to winding strings to match the NS5-brane’s localization on the T-dual circle. In this work, we explicitly construct this T-dual system in the doubled geometry formalism, which proves to successfully describe the duality despite a broken isometry on one side of the duality pair. We further suggest an extension of the doubled formalism to the gauged linear sigma models describing this system (both bosonic and supersymmetric) and show that previous calculations of world sheet instanton effects are best understood in this doubled form.

Keywords

Solitons Monopoles and Instantons String Duality 

References

  1. [1]
    T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [SPIRES].ADSGoogle Scholar
  3. [3]
    D.J. Gross and M.J. Perry, Magnetic monopoles in Kaluza-Klein theories, Nucl. Phys. B 226 (1983) 29 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R.D. Sorkin, Kaluza-Klein monopole, Phys. Rev. Lett. 51 (1983) 87 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    T. Banks, M. Dine, H. Dykstra and W. Fischler, Magnetic monopole solutions of string theory, Phys. Lett. B 212 (1988) 45 [SPIRES].ADSGoogle Scholar
  6. [6]
    H. Ooguri and C. Vafa, Two-dimensional black hole and singularities of CY manifolds, Nucl. Phys. B 463 (1996) 55 [hep-th/9511164] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J.P. Gauntlett, J.A. Harvey and J.T. Liu, Magnetic monopoles in string theory, Nucl. Phys. B 409 (1993) 363 [hep-th/9211056] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    R.R. Khuri, A multimonopole solution in string theory, Phys. Lett. B 294 (1992) 325 [hep-th/9205051] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    E. Eyras, B. Janssen and Y. Lozano, 5-branes, KK-monopoles and T -duality, Nucl. Phys. B 531 (1998) 275 [hep-th/9806169] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and T -duality of Kaluza-Klein and H-monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [SPIRES].MathSciNetzbMATHGoogle Scholar
  11. [11]
    J.A. Harvey and S. Jensen, Worldsheet instanton corrections to the Kaluza-Klein monopole, JHEP 10 (2005) 028 [hep-th/0507204] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    D. Tong, NS5-branes, T -duality and worldsheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C.M. Hull, Doubled geometry and T -folds, JHEP 07 (2007) 080 [hep-th/0605149] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Dabholkar and C. Hull, Generalised T -duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Sen, Kaluza-Klein dyons in string theory, Phys. Rev. Lett. 79 (1997) 1619 [hep-th/9705212] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    P.S. Howe and G. Sierra, Two-dimensional supersymmetric nonlinear σ-models with torsion, Phys. Lett. B 148 (1984) 451 [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Maharana and J.H. Schwarz, Noncompact symmetries in string theory, Nucl. Phys. B 390 (1993) 3 [hep-th/9207016] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [SPIRES].ADSGoogle Scholar
  23. [23]
    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualisation of dualities. I, Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    C.M. Hull and R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    E. Hackett-Jones and G. Moutsopoulos, Quantum mechanics of the doubled torus, JHEP 10 (2006) 062 [hep-th/0605114] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    D.S. Berman and N.B. Copland, The string partition function in Hull’s doubled formalism, Phys. Lett. B 649 (2007) 325 [hep-th/0701080] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    D.S. Berman, N.B. Copland and D.C. Thompson, Background field equations for the duality symmetric string, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    D.S. Berman and D.C. Thompson, Duality symmetric strings, dilatons and O(d,d) effective actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    E. Witten, Phases of N =2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    I. Affeck, On constrained instantons, Nucl. Phys. B 191 (1981) 429 [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    K. Okuyama, Linear σ-models of H and KK monopoles, JHEP 08 (2005) 089 [hep-th/0508097] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A.D. Shapere and F. Wilczek, Selfdual models with theta terms, Nucl. Phys. B 320 (1989) 669 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    A. Giveon, E. Rabinovici and G. Veneziano, Duality in string background space, Nucl. Phys. B 322 (1989) 167 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    E. Witten, Branes, instantons, and Taub-NUT spaces, JHEP 06 (2009) 067 [arXiv:0902.0948] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsAlma CollegeAlmaU.S.A.

Personalised recommendations