Light sneutrino dark matter at the LHC

Open Access
Article

Abstract

In supersymmetric (SUSY) models with Dirac neutrino masses, a weak-scale trilinear \( {A_{\tilde{\nu }}} \) term that is not proportional to the small neutrino Yukawa couplings can induce a sizable mixing between left and right-handed sneutrinos. The lighters neutrino mass eigenstate can hence become the lightest SUSY particle (LSP) and a viable dark matter candidate. In particular, it can be an excellent candidate for light dark matter with mass below ∼ 10 GeV. Such a light mixed sneutrino LSP has a dramatic effect on SUSY signatures at the LHC, as charginos decay dominantly into the light sneutrino, \( {\tilde{\nu }_1} \), plus a charged lepton, and neutralinos decay invisibly into \( {\tilde{\nu }_1}\nu \). We perform a detailed study of the LHC potential to resolve the light sneutrino dark matter scenario by means of three representative benchmark points with different gluino and squark mass hierarchies. We study in particular the determination of the \( {\tilde{\nu }_1} \) mass from cascade decays involving charginos, using the mT2 variable. Moreover, we address measurements of additional invisible sparticles, in our case \( {\tilde{Z}_{1,2}} \), and the question of discrimination against the MSSM.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    G. Bertone ed., Particle dark matter: observations, models and searches, Cambridge University Press, Cambridge U.K. (2010) [SPIRES].MATHGoogle Scholar
  2. [2]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    H. Baer and X. Tata, Dark matter and the LHC, arXiv:0805.1905 [SPIRES].
  4. [4]
    S.M. Bilenky, C. Giunti and W. Grimus, Phenomenology of neutrino oscillations, Prog. Part. Nucl. Phys. 43 (1999) 1 [hep-ph/9812360] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [SPIRES].ADSGoogle Scholar
  6. [6]
    F. Borzumati and Y. Nomura, Low-scale see-saw mechanisms for light neutrinos, Phys. Rev. D 64 (2001) 053005 [hep-ph/0007018] [SPIRES].ADSGoogle Scholar
  7. [7]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    N. Jarosik et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: sky maps, systematic errors, and basic results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    G. Bélanger, M. Kakizaki, E.K. Park, S. Kraml and A. Pukhov, Light mixed sneutrinos as thermal dark matter, JCAP 11 (2010) 017 [arXiv:1008.0580] [SPIRES].Google Scholar
  10. [10]
    M. Burns, K. Kong, K.T. Matchev and M. Park, Using subsystem M T2 for complete mass determinations in decay chains with missing energy at hadron colliders, JHEP 03 (2009) 143 [arXiv:0810.5576] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    Z. Thomas, D. Tucker-Smith and N. Weiner, Mixed sneutrinos, dark matter and the LHC, Phys. Rev. D 77 (2008) 115015 [arXiv:0712.4146] [SPIRES].ADSGoogle Scholar
  12. [12]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [SPIRES].ADSMATHCrossRefGoogle Scholar
  13. [13]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    S. Kraml and D.T. Nhung, Three-body decays of sleptons in models with non-universal Higgs masses, JHEP 02 (2008) 061 [arXiv:0712.1986] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    A. Kumar, D. Tucker-Smith and N. Weiner, Neutrino mass, sneutrino dark matter and signals of lepton flavor violation in the MRSSM, JHEP 09 (2010) 111 [arXiv:0910.2475] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    J. March-Russell, C. Mc Cabe and M. Mc Cullough, Neutrino-flavoured sneutrino dark matter, JHEP 03 (2010) 108 [arXiv:0911.4489] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
  19. [19]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].ADSMATHCrossRefGoogle Scholar
  20. [20]
    P.Z. Skands et al., SUSY Les Houches Accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, \( \overline p p \) and e + e - reactions, hep-ph/0312045 [SPIRES].
  22. [22]
    H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt {s} = 10 \) and 14TeV without and with missing E T, JHEP 09 (2009) 063 [arXiv:0907.1922] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    K.T. Matchev, F. Moortgat, L. Pape and M. Park, Precise reconstruction of sparticle masses without ambiguities, JHEP 08 (2009) 104 [arXiv:0906.2417] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    A.J. Barr et al., Guide to transverse projections and mass-constraining variables, arXiv:1105.2977 [SPIRES].
  25. [25]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [SPIRES].ADSGoogle Scholar
  26. [26]
    A. Barr, C. Lester and P. Stephens, m T2 : the truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [SPIRES].ADSGoogle Scholar
  27. [27]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Measuring superparticle masses at hadron collider using the transverse mass kink, JHEP 02 (2008) 035 [arXiv:0711.4526] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    A. Rajaraman and F. Yu, A new method for resolving combinatorial ambiguities at hadron colliders, Phys. Lett. B 700 (2011) 126 [arXiv:1009.2751] [SPIRES].ADSGoogle Scholar
  29. [29]
    N. Fornengo, S. Scopel and A. Bottino, Discussing direct search of dark matter particles in the minimal supersymmetric extension of the standard model with light neutralinos, Phys. Rev. D 83 (2011) 015001 [arXiv:1011.4743] [SPIRES].ADSGoogle Scholar
  30. [30]
    D.A. Vasquez, G. Bélanger, C. Boehm, A. Pukhov and J. Silk, Can neutralinos in the MSSM and NMSSM scenarios still be light?, Phys. Rev. D 82 (2010) 115027 [arXiv:1009.4380] [SPIRES].ADSGoogle Scholar
  31. [31]
    P. Draper, T. Liu, C.E.M. Wagner, L.-T. Wang and H. Zhang, Dark light Higgs, Phys. Rev. Lett. 106 (2011) 121805 [arXiv:1009.3963] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    J. Cao, K.-i. Hikasa, W. Wang and J.M. Yang, Light dark matter in NMSSM and implication on Higgs phenomenology, arXiv:1104.1754 [SPIRES].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Geneviève Bélanger
    • 1
  • Sabine Kraml
    • 2
  • Andre Lessa
    • 3
  1. 1.LAPTHUniv. de Savoie, CNRSAnnecy-le-VieuxFrance
  2. 2.Laboratoire de Physique Subatomique et de CosmologieUJF Grenoble 1, CNRS/IN2P3, INPGGrenobleFrance
  3. 3.Dept. of Physics and AstronomyUniversity of OklahomaNormanU.S.A.

Personalised recommendations