Flavour physics constraints in the BMSSM

Open Access
Article

Abstract

We study the implications of the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM to flavour physics observables. We identify the constraints of flavour physics on the parameters of the BMSSM when we: a) focus on a region of parameters for which electroweak baryogenesis is feasible, b) use a CMSSM-like parametrization, and c) consider the case of a generic NUHM-type model. We find significant differences as compared to the standard MSSM case.

Keywords

Extended Supersymmetry Rare Decays Higgs Physics 

References

  1. [1]
    A. Strumia, Bounds on Kaluza-Klein excitations of the SM vector bosons from electroweak tests, Phys. Lett. B 466 (1999) 107 [hep-ph/9906266] [SPIRES].ADSGoogle Scholar
  2. [2]
    J.A. Casas, J.R. Espinosa and I. Hidalgo, The MSSM fine tuning problem: a way out, JHEP 01 (2004) 008 [hep-ph/0310137] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    A. Brignole, J.A. Casas, J.R. Espinosa and I. Navarro, Low-scale supersymmetry breaking: effective description, electroweak breaking and phenomenology, Nucl. Phys. B 666 (2003) 105 [hep-ph/0301121] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    M. Pospelov, A. Ritz and Y. Santoso, Flavor and CP-violating physics from new supersymmetric thresholds, Phys. Rev. Lett. 96 (2006) 091801 [hep-ph/0510254] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    M. Pospelov, A. Ritz and Y. Santoso, Sensitivity to new supersymmetric thresholds through flavour and CP-violating physics, Phys. Rev. D 74 (2006) 075006 [hep-ph/0608269] [SPIRES].ADSGoogle Scholar
  6. [6]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [SPIRES].ADSGoogle Scholar
  7. [7]
    I. Antoniadis, E. Dudas and D.M. Ghilencea, Supersymmetric models with higher dimensional operators, JHEP 03 (2008) 045 [arXiv:0708.0383] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, MSSM with dimension-five operators (MSSM5), Nucl. Phys. B 808 (2009) 155 [arXiv:0806.3778] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, Higher dimensional operators in the MSSM, AIP Conf. Proc. 1078 (2009) 175 [arXiv:0809.4598] [SPIRES].ADSGoogle Scholar
  10. [10]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, MSSM Higgs with dimension-six operators, Nucl. Phys. B 831 (2010) 133 [arXiv:0910.1100] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, Beyond the MSSM Higgs with D = 6 effective operators, Nucl. Phys. B 848 (2011) 1 [arXiv:1012.5310] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    P. Batra and E. Ponton, Supersymmetric electroweak symmetry breaking, Phys. Rev. D 79 (2009) 035001 [arXiv:0809.3453] [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    K. Blum and Y. Nir, Beyond MSSM baryogenesis, Phys. Rev. D 78 (2008) 035005 [arXiv:0805.0097] [SPIRES].ADSGoogle Scholar
  16. [16]
    N. Bernal, K. Blum, Y. Nir and M. Losada, BMSSM implications for cosmology, JHEP 08 (2009) 053 [arXiv:0906.4696] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    K. Blum, C. Delaunay, M. Losada, Y. Nir and S. Tulin, CP violation beyond the MSSM: baryogenesis and electric dipole moments, JHEP 05 (2010) 101 [arXiv:1003.2447] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    K. Cheung, S.Y. Choi and J. Song, Impact on the light higgsino-LSP scenario from physics beyond the minimal supersymmetric standard model, Phys. Lett. B 677 (2009) 54 [arXiv:0903.3175] [SPIRES].ADSGoogle Scholar
  19. [19]
    M. Berg, J. Edsjo, P. Gondolo, E. Lundstrom and S. Sjors, Neutralino dark matter in BMSSM effective theory, JCAP 08 (2009) 035 [arXiv:0906.0583] [SPIRES].ADSGoogle Scholar
  20. [20]
    N. Bernal and A. Goudelis, Dark matter detection in the BMSSM, JCAP 03 (2010) 007 [arXiv:0912.3905] [SPIRES].ADSGoogle Scholar
  21. [21]
    N. Bernal, Neutralino dark matter detection beyond the MSSM, arXiv:1005.2116 [SPIRES].
  22. [22]
    K.J. Bae, H.D. Kim and S. Shin, Light neutralino dark matter with a very light Higgs for CoGeNT and DAMA/LIBRA data, Phys. Rev. D 82 (2010) 115014 [arXiv:1005.5131] [SPIRES].ADSGoogle Scholar
  23. [23]
    S. Shin, Light neutralino dark matter in light Higgs scenario related with the CoGeNT and DAMA/LIBRA results, arXiv:1011.6377 [SPIRES].
  24. [24]
    S. Cassel and D.M. Ghilencea, A review of naturalness and dark matter prediction for the Higgs mass in MSSM and beyond, arXiv:1103.4793 [SPIRES].
  25. [25]
    M. Carena, K. Kong, E. Ponton and J. Zurita, Supersymmetric Higgs bosons and beyond, Phys. Rev. D 81 (2010) 015001 [arXiv:0909.5434] [SPIRES].ADSGoogle Scholar
  26. [26]
    M. Carena, E. Ponton and J. Zurita, BMSSM Higgs bosons at the Tevatron and the LHC, Phys. Rev. D 82 (2010) 055025 [arXiv:1005.4887] [SPIRES].ADSGoogle Scholar
  27. [27]
    M. Carena, E. Ponton and J. Zurita, SUSY Higgs bosons and beyond, PoS(DIS 2010)212 [arXiv:1006.5014] [SPIRES].
  28. [28]
    P. Tziveloglou, Higher dimensional operators in the MSSM, Nucl. Phys. Proc. Suppl. 192 193 (2009) 190 [SPIRES].
  29. [29]
    K.J. Bae, R. Dermisek, D. Kim, H.D. Kim and J.-H. Kim, Light Higgs scenario in BMSSM and LEP precision data, arXiv:1001.0623 [SPIRES].
  30. [30]
    A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [SPIRES].ADSGoogle Scholar
  32. [32]
    L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [SPIRES].ADSGoogle Scholar
  33. [33]
    N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with non-universal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [SPIRES].ADSGoogle Scholar
  35. [35]
    K. Blum, C. Delaunay and Y. Hochberg, Vacuum (meta)stability beyond the MSSM, Phys. Rev. D 80 (2009) 075004 [arXiv:0905.1701] [SPIRES].ADSGoogle Scholar
  36. [36]
    M.S. Carena, A. Menon, R. Noriega-Papaqui, A. Szynkman and C.E.M. Wagner, Constraints on B and Higgs physics in minimal low energy supersymmetric models, Phys. Rev. D 74 (2006) 015009 [hep-ph/0603106] [SPIRES].ADSGoogle Scholar
  37. [37]
    S. Heinemeyer, X. Miao, S. Su and G. Weiglein, B-physics observables and electroweak precision data in the CMSSM, mGMSB and mAMSB, JHEP 08 (2008) 087 [arXiv:0805.2359] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    D. Eriksson, F. Mahmoudi and O. Stal, Charged Higgs bosons in minimal supersymmetry: updated constraints and experimental prospects, JHEP 11 (2008) 035 [arXiv:0808.3551] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of B → K * γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [SPIRES].ADSMATHCrossRefGoogle Scholar
  40. [40]
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579, http://superiso.in2p3.fr [arXiv:0808.3144] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    J.R. Ellis, S. Heinemeyer, K.A. Olive and G. Weiglein, Light heavy MSSM Higgs bosons at large tan β, Phys. Lett. B 653 (2007) 292 [arXiv:0706.0977] [SPIRES].ADSGoogle Scholar
  42. [42]
    F. Mahmoudi, New constraints on supersymmetric models from b → , JHEP 12 (2007) 026 [arXiv:0710.3791] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    J.R. Ellis, S. Heinemeyer, K.A. Olive, A.M. Weber and G. Weiglein, The supersymmetric parameter space in light of B-physics observables and electroweak precision data, JHEP 08 (2007) 083 [arXiv:0706.0652] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].
  45. [45]
    M. Misiak et al., The first estimate of \( B\left( {\bar{B} \to {{X} \left/ {{s\gamma }} \right.}} \right) \) at O(α s 2), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    M. Misiak and M. Steinhauser, NNLO QCD corrections to the B → X s γ matrix elements using interpolation in m c, Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  48. [48]
    W.-S. Hou, Enhanced charged Higgs boson effects in B  → τ anti-neutrino, μ anti-neutrino and B → τ anti-neutrino + X, Phys. Rev. D 48 (1993) 2342 [SPIRES].ADSGoogle Scholar
  49. [49]
    A.G. Akeroyd and S. Recksiegel, The effect of H ± on B ± → τ ± ν/τ and B ± → μ ± ν μ, J. Phys. G 29 (2003) 2311 [hep-ph/0306037] [SPIRES].ADSGoogle Scholar
  50. [50]
    B. Grzadkowski and W.-S. Hou, Solutions to the B meson semileptonic branching ratio puzzle within two Higgs doublet models, Phys. Lett. B 272 (1991) 383 [SPIRES].ADSGoogle Scholar
  51. [51]
    U. Nierste, S. Trine and S. Westhoff, Charged-Higgs effectsin a new B → Dτν differential decay distribution, Phys. Rev. D 78 (2008) 015006 [arXiv:0801.4938] [SPIRES].ADSGoogle Scholar
  52. [52]
    J.F. Kamenik and F. Mescia, B → Dτν branching ratios: opportunity for lattice QCD and hadron colliders, Phys. Rev. D 78 (2008) 014003 [arXiv:0802.3790] [SPIRES].ADSGoogle Scholar
  53. [53]
    BABAR collaboration, B. Aubert et al., Observation of the semileptonic decays \( B \to {D^*}{\tau^{-} }{\bar{\nu }_\tau } \) and evidence for \( B \to D{\tau^{-} }{\bar{\nu }_\tau } \), Phys. Rev. Lett. 100 (2008) 021801 [arXiv:0709.1698] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    J.L. Hewett, Searching for new physics with charm, hep-ph/9505246 [SPIRES].
  55. [55]
    A.G. Akeroyd, Effect of H ± on D/s ± → μ ± ν μ and D/s ± → τ ± ν τ, Prog. Theor. Phys. 111 (2004) 295 [hep-ph/0308260] [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    A.G. Akeroyd and C.H. Chen, Effect of H ± on B ± → τ ± ν τ and D s ± → μ ± ν μ , τ ± ν τ, Phys. Rev. D 75 (2007) 075004 [hep-ph/0701078] [SPIRES].ADSGoogle Scholar
  57. [57]
    A.G. Akeroyd and F. Mahmoudi, Constraints on charged Higgs bosons from D s ± → μ ± ν and D s ± → τ ± ν, JHEP 04 (2009) 121 [arXiv:0902.2393] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    C.T.H. Davies et al., Update: precision Ds decay constant from full lattice QCD using very fine lattices, Phys. Rev. D 82 (2010) 114504 [arXiv:1008.4018] [SPIRES].ADSGoogle Scholar
  59. [59]
    FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., Precision tests of the Standard Model with leptonic and semileptonic kaon decays, arXiv:0801.1817 [SPIRES].
  60. [60]
    HPQCD collaboration, E. Follana, C.T.H. Davies, G.P. Lepage and J. Shigemitsu, High precision determination of the π, K, D and D s decay constants from lattice QCD, Phys. Rev. Lett. 100 (2008) 062002 [arXiv:0706.1726] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    M. Drees and K. Hagiwara, Supersymmetric contribution to the electroweak ρ parameter, Phys. Rev. D 42 (1990) 1709 [SPIRES].ADSGoogle Scholar
  62. [62]
    M. Quirós, Electroweak baryogenesis and the Higgs and stop masses, Nucl. Phys. Proc. Suppl. 101 (2001) 401 [hep-ph/0101230] [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The baryogenesis window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    J.R. Espinosa, Dominant two-loop corrections to the MSSM finite temperature effective potential, Nucl. Phys. B 475 (1996) 273 [hep-ph/9604320] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    M.S. Carena, M. Quirós and C.E.M. Wagner, Opening the window for electroweak baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [SPIRES].ADSGoogle Scholar
  66. [66]
    A. Brignole, J.R. Espinosa, M. Quirós and F. Zwirner, Aspects of the electroweak phase transition in the minimal supersymmetric standard model, Phys. Lett. B 324 (1994) 181 [hep-ph/9312296] [SPIRES].ADSGoogle Scholar
  67. [67]
    J.R. Espinosa, M. Quirós and F. Zwirner, On the electroweak phase transition in the minimal supersymmetric standard model, Phys. Lett. B 307 (1993) 106 [hep-ph/9303317] [SPIRES].ADSGoogle Scholar
  68. [68]
    J.R. Espinosa, Dominant two-loop corrections to the MSSM finite temperature effective potential, Nucl. Phys. B 475 (1996) 273 [hep-ph/9604320] [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    M.S. Carena, M. Quirós and C.E.M. Wagner, Opening the window for electroweak baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [SPIRES].ADSGoogle Scholar
  70. [70]
    D. Delepine, J.M. Gerard, R. Gonzalez Felipe and J. Weyers, A light stop and electroweak baryogenesis, Phys. Lett. B 386 (1996) 183 [hep-ph/9604440] [SPIRES].ADSGoogle Scholar
  71. [71]
    J.M. Cline and K. Kainulainen, Supersymmetric electroweak phase transition: beyond perturbation theory, Nucl. Phys. B 482 (1996) 73 [hep-ph/9605235] [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    M. Losada, High temperature dimensional reduction of the MSSM and other multi-scalar models, Phys. Rev. D 56 (1997) 2893 [hep-ph/9605266] [SPIRES].ADSGoogle Scholar
  73. [73]
    M. Laine, Effective theories of MSSM at high temperature, Nucl. Phys. B 481 (1996) 43 [Erratum ibid. B 548 (1999) 637] [hep-ph/9605283] [SPIRES].ADSCrossRefGoogle Scholar
  74. [74]
    G.R. Farrar and M. Losada, SUSY and the electroweak phase transition, Phys. Lett. B 406 (1997) 60 [hep-ph/9612346] [SPIRES].ADSGoogle Scholar
  75. [75]
    D. Bödeker, P. John, M. Laine and M.G. Schmidt, The 2-loop MSSM finite temperature effective potential with stop condensation, Nucl. Phys. B 497 (1997) 387 [hep-ph/9612364] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    B. de Carlos and J.R. Espinosa, The baryogenesis window in the MSSM, Nucl. Phys. B 503 (1997) 24 [hep-ph/9703212] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    M. Laine and K. Rummukainen, The MSSM electroweak phase transition on the lattice, Nucl. Phys. B 535 (1998) 423 [hep-lat/9804019] [SPIRES].ADSCrossRefGoogle Scholar
  78. [78]
    M.S. Carena, M. Quirós and C.E.M. Wagner, Electroweak baryogenesis and Higgs and stop searches at LEP and the Tevatron, Nucl. Phys. B 524 (1998) 3 [hep-ph/9710401] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    M. Losada, The two-loop finite-temperature effective potential of the MSSM and baryogenesis, Nucl. Phys. B 537 (1999) 3 [hep-ph/9806519] [SPIRES].ADSCrossRefGoogle Scholar
  80. [80]
    M. Laine and K. Rummukainen, Higgs sector CP-violation at the electroweak phase transition, Nucl. Phys. B 545 (1999) 141 [hep-ph/9811369] [SPIRES].ADSCrossRefGoogle Scholar
  81. [81]
    M. Losada, Mixing effects in the finite-temperature effective potential of the MSSM with a light stop, Nucl. Phys. B 569 (2000) 125 [hep-ph/9905441] [SPIRES].ADSCrossRefGoogle Scholar
  82. [82]
    M. Laine and M. Losada, Two-loop dimensional reduction and effective potential without temperature expansions, Nucl. Phys. B 582 (2000) 277 [hep-ph/0003111] [SPIRES].ADSCrossRefGoogle Scholar
  83. [83]
    V. Cirigliano, Y. Li, S. Profumo and M.J. Ramsey-Musolf, MSSM baryogenesis and electric dipole moments: an update on the phenomenology, JHEP 01 (2010) 002 [arXiv:0910.4589] [SPIRES].ADSCrossRefGoogle Scholar
  84. [84]
    Y. Li, S. Profumo and M. Ramsey-Musolf, Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments, Phys. Lett. B 673 (2009) 95 [arXiv:0811.1987] [SPIRES].ADSGoogle Scholar
  85. [85]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [SPIRES].ADSMATHCrossRefGoogle Scholar
  86. [86]
    CDF and D0 collaboration and others, Combination of CDF and D0 results on the mass of the top quark, arXiv:1007.3178 [SPIRES].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Physikalisches Institut and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  2. 2.Centro de Investigaciones, Cra 3 Este No 47A-15Universidad Antonio NariñoBogotáColombia
  3. 3.CERN Theory Division, Physics DepartmentGeneva 23Switzerland

Personalised recommendations