Advertisement

(0,2) deformations of linear sigma models

  • Maximilian Kreuzer
  • Jock McOrist
  • Ilarion V. Melnikov
  • M. Ronen Plesser
Article

Abstract

We study (0,2) deformations of a (2,2) supersymmetric gauged linear sigma model for a Calabi-Yau hypersurface in a Fano toric variety. In the non-linear sigma model these correspond to some of the holomorphic deformations of the tangent bundle on the hypersurface. Combinatorial formulas are given for the number of these deformations, and we show that these numbers are exchanged by mirror symmetry in a subclass of the models.

Keywords

Superstrings and Heterotic Strings Superstring Vacua Sigma Models 

References

  1. [1]
    D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, American Mathematical Society, Providence, U.S.A. (2000).Google Scholar
  2. [2]
    K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow, Mirror symmetry, Clay Mathematics Monographs 1. American Mathematical Society, Providence U.S.A. (2003).zbMATHGoogle Scholar
  3. [3]
    P. Candelas, X.C. De la Ossa, P.S. Green and L. Parkes, An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds, Phys. Lett. B 258 (1991) 118 [SPIRES].ADSGoogle Scholar
  4. [4]
    V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003].MathSciNetzbMATHGoogle Scholar
  5. [5]
    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [SPIRES].MathSciNetGoogle Scholar
  6. [6]
    V.V. Batyrev and L.A. Borisov, On Calabi-Yau complete intersections in toric varieties, alg-geom/9412017 [SPIRES].
  7. [7]
    V. Batyrev and B. Nill, Combinatorial aspects of mirror symmetry, math/0703456. MATH/0703456;
  8. [8]
    E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, The monomial divisor mirror map, alg-geom/9309007 [SPIRES].
  10. [10]
    D.R. Morrison and M. RonenPlesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    V.V. Batyrev and E.N. Materov, Toric residues and mirror symmetry, Mosc. Math. J. 2 (2002) 435 [math/0203216].MathSciNetzbMATHGoogle Scholar
  12. [12]
    A. Szenes and M. Vergne, Toric reduction and a conjecture of Batyrev and Materov, Invent. Math. 158 (2004) 453 [math/0306311].MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    L.A. Borisov, Higher-Stanley-Reisner rings and toric residues, Compos. Math. 141 (2005) 161 [math/0306307].MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    K. Karu, Toric residue mirror conjecture for Calabi-Yau complete intersections, J. Alg. Geom. 14 (2005) 741 [math/0311338].MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    J. Distler and S. Kachru, (0,2) Landau-Ginzburg theory, Nucl. Phys. B 413 (1994) 213 [hep-th/9309110] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    E. Silverstein and E. Witten, Criteria for conformal invariance of (0,2) models, Nucl. Phys. B 444 (1995) 161 [hep-th/9503212] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Basu and S. Sethi, World-sheet stability of (0,2) linear σ-models, Phys. Rev. D 68 (2003) 025003 [hep-th/0303066] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    C. Beasley and E. Witten, Residues and world-sheet instantons, JHEP 10 (2003) 065 [hep-th/0304115] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A. Adams, A. Basu and S. Sethi, (0,2) duality, Adv. Theor. Math. Phys. 7 (2004) 865 [hep-th/0309226] [SPIRES].MathSciNetGoogle Scholar
  20. [20]
    S.H. Katz and E. Sharpe, Notes on certain (0,2) correlation functions, Commun. Math. Phys. 262 (2006) 611 [hep-th/0406226] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    J. Guffin and S. Katz, Deformed quantum cohomology and (0,2) mirror symmetry, JHEP 08 (2010) 109 [arXiv:0710.2354] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    J. McOrist and I.V. Melnikov, Half-twisted correlators from the Coulomb branch, JHEP 04 (2008) 071 [arXiv:0712.3272] [SPIRES].MathSciNetCrossRefGoogle Scholar
  23. [23]
    J. McOrist and I.V. Melnikov, Summing the instantons in half-twisted linear σ-models, JHEP 02 (2009) 026 [arXiv:0810.0012] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    D.A. Cox, The homogeneous coordinate ring of a toric variety, revised version, J. Alg. Geom. 4 (1995) 17 [alg-geom/9210008] [SPIRES].zbMATHGoogle Scholar
  25. [25]
    J. Distler, Notes on (0,2) superconformal field theories, hep-th/9502012 [SPIRES].
  26. [26]
    M. Kreuzer and H. Skarke, PALP: a package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun. 157 (2004) 87 [math/0204356]. = MATH/0204356;MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. [27]
    T. Hubsch, Calabi-Yau manifolds: a bestiary for physicists, World Scientific, Singapore (1992).Google Scholar
  28. [28]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301 [hep-th/9308122] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. [29]
    A. Adams, J. Distler and M. Ernebjerg, Topological heterotic rings, Adv. Theor. Math. Phys. 10 (2006) 657 [hep-th/0506263] [SPIRES].MathSciNetzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Maximilian Kreuzer
    • 1
  • Jock McOrist
    • 2
  • Ilarion V. Melnikov
    • 3
  • M. Ronen Plesser
    • 4
  1. 1.Institute for Theoretical PhysicsTU-WienViennaAustria
  2. 2.Department of Applied Mathematics and Theoretical PhysicsCentre for Mathematical SciencesCambridgeU.K.
  3. 3.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)GolmGermany
  4. 4.Center for Geometry and Theoretical Physics, Box 90318Duke UniversityDurhamU.S.A.

Personalised recommendations