Advertisement

Non-relativistic fluid dual to asymptotically AdS gravity at finite cutoff surface

  • Rong-Gen Cai
  • Li Li
  • Yun-Long Zhang
Article

Abstract

Using the non-relativistic hydrodynamic limit, we solve equations of motion for Einstein gravity and Gauss-Bonnet gravity with a negative cosmological constant within the region between a finite cutoff surface and a black brane horizon, up to second order of the non-relativistic hydrodynamic expansion parameter. Through the Brown-York tensor, we calculate the stress energy tensor of dual fluids living on the cutoff surface. With the black brane solutions, we show that for both Einstein gravity and Gauss-Bonnet gravity, the ratio of shear viscosity to entropy density of dual fluid does not run with the cutoff surface. The incompressible Navier-Stokes equations are also obtained in both cases.

Keywords

Holography and condensed matter physics (AdS/CMT) Black Holes in String Theory Classical Theories of Gravity 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetzbMATHGoogle Scholar
  4. [4]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].ADSGoogle Scholar
  10. [10]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear Viscosity from Gauss-Bonnet Gravity with a Dilaton Coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].ADSGoogle Scholar
  13. [13]
    R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].ADSGoogle Scholar
  14. [14]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].ADSGoogle Scholar
  15. [15]
    R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear Viscosity from Effective Couplings of Gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].ADSGoogle Scholar
  16. [16]
    R.-G. Cai, Y. Liu and Y.-W. Sun, Transport Coefficients from Extremal Gauss-Bonnet Black Holes, JHEP 04 (2010) 090 [arXiv:0910.4705] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian Approach to Fluid/Gravity Duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [SPIRES].
  19. [19]
    V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    D. Nickel and D.T. Son, Deconstructing holographic liquids, arXiv:1009.3094 [SPIRES].
  22. [22]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, arXiv:1010.4036 [SPIRES].
  24. [24]
    S.-J. Sin and Y. Zhou, Holographic Wilsonian RG Flow and Sliding Membrane Paradigm, JHEP 05 (2011) 030 [arXiv:1102.4477] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes To Einstein, arXiv:1101.2451 [SPIRES].
  26. [26]
    G. Compere, P. McFadden, K. Skenderis and M. Taylor, The holographic fluid dual to vacuum Einstein gravity, arXiv:1103.3022 [SPIRES].
  27. [27]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    M. Rangamani, Gravity & Hydrodynamics: Lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    S. Bhattacharyya, S. Minwalla and S.R. Wadia, The Incompressible Non-Relativistic Navier-Stokes Equation from Gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal Nonlinear Fluid Dynamics from Gravity in Arbitrary Dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. [32]
    R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [SPIRES].ADSGoogle Scholar
  33. [33]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    L. Landau and E. Lifshitz, Fluid Mechanics (2nd ed.): Course of Theoretical Physics Vol. 6, Elsevier Butterworth-Heinemann (1987).Google Scholar
  36. [36]
    D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].ADSGoogle Scholar
  38. [38]
    Y.-P. Hu, H.-F. Li and Z.-Y. Nie, The first order hydrodynamics via AdS/CFT correspondence in the Gauss-Bonnet gravity, JHEP 01 (2011) 123 [arXiv:1012.0174] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    Y.-P. Hu, P. Sun and J.-H. Zhang, Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity, Phys. Rev. D 83 (2011) 126003 [arXiv:1103.3773] [SPIRES].ADSGoogle Scholar
  40. [40]
    R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392.ADSGoogle Scholar
  41. [41]
    S.C. Davis, Generalised Israel junction conditions for a Gauss-Bonnet brane world, Phys. Rev. D 67 (2003) 024030 [hep-th/0208205] [SPIRES].ADSGoogle Scholar
  42. [42]
    Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    C. Eling, I. Fouxon and Y. Oz, The Incompressible Navier-Stokes Equations From Membrane Dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    C. Eling and Y. Oz, Relativistic CFT Hydrodynamics from the Membrane Paradigm, JHEP 02 (2010) 069 [arXiv:0906.4999] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations