A weakly constrained W′ at the early LHC

  • Christophe Grojean
  • Ennio Salvioni
  • Riccardo Torre
Open Access


We study, within an effective approach, the phenomenology of a charged W′ vector which transforms as an isosinglet under the Standard Model gauge group. We discuss bounds from present data, finding that these are quite weak for suitable choices of the right-handed quark mixing matrix. Then we study the resonant production at the early LHC of such a weakly constrained W′. We start discussing the reach in the dijet final state, which is one of the channels where the first W′ signal would most likely appear, and then we analyse prospects for the more challenging discovery of W′ decays into and WZ. We show in particular that the former can be used to gain insight on the possibly composite nature of the resonance.


Beyond Standard Model Phenomenological Models 


  1. [1]
    P. Langacker, The Physics of Heavy Z’ Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z’ models: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Z’ models: present bounds and early LHC reach, JHEP 03 (2010) 010 [arXiv:0911.1450] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z’ physics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [SPIRES].ADSGoogle Scholar
  5. [5]
    C.W. Bauer, Z. Ligeti, M. Schmaltz, J. Thaler and D.G.E. Walker, Supermodels for early LHC, Phys. Lett. B 690 (2010) 280 [arXiv:0909.5213] [SPIRES].ADSGoogle Scholar
  6. [6]
    R. Barbieri and R. Torre, Signals of single particle production at the earliest LHC, Phys. Lett. B 695 (2011) 259 [arXiv:1008.5302] [SPIRES].ADSGoogle Scholar
  7. [7]
    T. Han, I. Lewis and Z. Liu, Colored Resonant Signals at the LHC: Largest Rate and Simplest Topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak Limits on General New Vector Bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [SPIRES].CrossRefGoogle Scholar
  9. [9]
    K. Hsieh, K. Schmitz, J.-H. Yu and C.P. Yuan, Global Analysis of General SU(2) × SU(2) × U(1) Models with Precision Data, Phys. Rev. D 82 (2010) 035011 [arXiv:1003.3482] [SPIRES].ADSGoogle Scholar
  10. [10]
    M. Schmaltz and C. Spethmann, Two Simple W’ Models for the Early LHC, arXiv:1011.5918 [SPIRES].
  11. [11]
    S. Chang, A ’littlest Higgs’ model with custodial SU(2) symmetry, JHEP 12 (2003) 057 [hep-ph/0306034] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].ADSGoogle Scholar
  13. [13]
    R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Heavy Vectors in Higgs-less models, Phys. Rev. D 78 (2008) 036012 [arXiv:0806.1624] [SPIRES].ADSGoogle Scholar
  14. [14]
    H.-J. He et al., LHC Signatures of New Gauge Bosons in Minimal Higgsless Model, Phys. Rev. D 78 (2008) 031701 [arXiv:0708.2588] [SPIRES].ADSGoogle Scholar
  15. [15]
    R. Barbieri, A.E. Cárcamo Hernández, G. Corcella, R. Torre and E. Trincherini, Composite Vectors at the Large Hadron Collider, JHEP 03 (2010) 068 [arXiv:0911.1942] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    R. Barbieri, S. Rychkov and R. Torre, Signals of composite electroweak-neutral Dark Matter: LHC/Direct Detection interplay, Phys. Lett. B 688 (2010) 212 [arXiv:1001.3149] [SPIRES].ADSGoogle Scholar
  17. [17]
    A.E. Cárcamo Hernández and R. Torre, A ’composite’ scalar-vector system at the LHC, Nucl. Phys. B 841 (2010) 188 [arXiv:1005.3809] [SPIRES].CrossRefGoogle Scholar
  18. [18]
    O. Catà, G. Isidori and J.F. Kamenik, Drell-Yan production of Heavy Vectors in Higgsless models, Nucl. Phys. B 822 (2009) 230 [arXiv:0905.0490] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    A. Birkedal, K. Matchev and M. Perelstein, Collider phenomenology of the Higgsless models, Phys. Rev. Lett. 94 (2005) 191803 [hep-ph/0412278] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    A. Martin and V. Sanz, Mass-Matching in Higgsless, JHEP 01 (2010) 075 [arXiv:0907.3931] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    S. Gopalakrishna, T. Han, I. Lewis, Z.-g. Si and Y.-F. Zhou, Chiral Couplings of W’ and Top Quark Polarization at the LHC, Phys. Rev. D 82 (2010) 115020 [arXiv:1008.3508] [SPIRES].ADSGoogle Scholar
  22. [22]
    M. Frank, A. Hayreter and I. Turan, Production and Decays of W R bosons at the LHC, Phys. Rev. D 83 (2011) 035001 [arXiv:1010.5809] [SPIRES].ADSGoogle Scholar
  23. [23]
    T.G. Rizzo, The Determination of the Helicity of W’ Boson Couplings at the LHC, JHEP 05 (2007) 037 [arXiv:0704.0235] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, First Limits on Left-Right Symmetry Scale from LHC Data, Phys. Rev. D 83 (2011) 115014 [arXiv:1103.1627] [SPIRES].ADSGoogle Scholar
  25. [25]
    P. Langacker and S. Uma Sankar, Bounds on the Mass of W(R) and the W L− W R mixing angle ζ in general SU(2)L × SU(2)R × U(1) models, Phys. Rev. D 40 (1989) 1569 [SPIRES].ADSGoogle Scholar
  26. [26]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-Right Symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [arXiv:1005.5160] [SPIRES].ADSGoogle Scholar
  28. [28]
    M. Frank, A. Hayreter and I. Turan, B Decays in an Asymmetric Left-Right Model, Phys. Rev. D 82 (2010) 033012 [arXiv:1005.3074] [SPIRES].ADSGoogle Scholar
  29. [29]
    CDF collaboration, T. Aaltonen et al., Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [SPIRES].ADSGoogle Scholar
  30. [30]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [SPIRES].ADSGoogle Scholar
  31. [31]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [SPIRES].ADSGoogle Scholar
  32. [32]
    K. Cheung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry in the Large Invariant Mass Region, Phys. Rev. D 83 (2011) 074006 [arXiv:1101.1445] [SPIRES].ADSGoogle Scholar
  33. [33]
    J. Shelton and K.M. Zurek, A Theory for Maximal Flavor Violation, Phys. Rev. D 83 (2011) 091701 [arXiv:1101.5392] [SPIRES].ADSGoogle Scholar
  34. [34]
    V. Barger, W.-Y. Keung and C.-T. Yu, Tevatron Asymmetry of Tops in a W’,Z’ Model, Phys. Lett. B 698 (2011) 243 [arXiv:1102.0279] [SPIRES].ADSGoogle Scholar
  35. [35]
    A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    J.F. Donoghue and B.R. Holstein, Strong Bounds on Weak Couplings, Phys. Lett. B 113 (1982) 382 [SPIRES].ADSGoogle Scholar
  37. [37]
    I.I.Y. Bigi and J.M. Frere, Limits On Left-Right Mixing in Weak Interactions, Phys. Lett. B 110 (1982) 255 [SPIRES].ADSGoogle Scholar
  38. [38]
    G. Gounaris et al., Triple gauge boson couplings, hep-ph/9601233 [SPIRES].
  39. [39]
    The DELPHI collaboration, J. Abdallah et al., Measurements of CP-conserving Trilinear Gauge Boson Couplings WWV (V = γ, Z) in e + e Collisions at LEP2, Eur. Phys. J. C 66 (2010) 35 [arXiv:1002.0752] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    ALEPH collaboration, S. Schael et al., Improved measurement of the triple gauge-boson couplings γWW and ZWW in e + e collisions, Phys. Lett. B 614 (2005) 7 [SPIRES].ADSGoogle Scholar
  41. [41]
    L3 collaboration, P. Achard et al., Production of single W bosons at LEP and measurement of W W γ gauge coupling parameters, Phys. Lett. B 547 (2002) 151 [hep-ex/0209015] [SPIRES].Google Scholar
  42. [42]
    L3 collaboration, P. Achard et al., Measurement of triple gauge boson couplings of the W boson at LEP, Phys. Lett. B 586 (2004) 151 [hep-ex/0402036] [SPIRES].ADSGoogle Scholar
  43. [43]
    OPAL collaboration, G. Abbiendi et al., Measurement of charged current triple gauge boson couplings using W pairs at LEP, Eur. Phys. J. C 33 (2004) 463 [hep-ex/0308067] [SPIRES].ADSGoogle Scholar
  44. [44]
    CDF and D0 collaboration and others, Combination of CDF and D0 Results on the Mass of the Top Quark using up to 5.6 fb −1 of data, arXiv:1007.3178 [SPIRES].
  45. [45]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    A. Pukhov et al., CompHEP: A package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES].
  47. [47]
    A. Belyaev, N. Christensen and A. Pukhov, CalcHEP - a package for calculation of Feynman diagrams and integration over multi-particle phase space, Web page of the package, HepForge.
  48. [48]
    CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [SPIRES].ADSGoogle Scholar
  49. [49]
    Z. Sullivan, Fully differential W’ production and decay at next-to-leading order in QCD, Phys. Rev. D 66 (2002) 075011 [hep-ph/0207290] [SPIRES].ADSGoogle Scholar
  50. [50]
    CDF collaboration, T. Aaltonen et al., Search for the Production of Narrow \( t\bar{b} \) Resonances in 1.9 fb −1 of \( p\bar{p} \) Collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 103 (2009) 041801 [arXiv:0902.3276] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    D0 collaboration, V.M. Abazov et al., Search for W’ Boson Resonances Decaying to a Top Quark and a Bottom Quark, Phys. Rev. Lett. 100 (2008) 211803 [arXiv:0803.3256] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    D0 collaboration, V.M. Abazov et al., Search for W′ → tb resonances with left-and right-handed couplings to fermions, Phys. Lett. B 699 (2011) 145 [arXiv:1101.0806] [SPIRES].ADSGoogle Scholar
  53. [53]
    CMS collaboration, V. Khachatryan et al., Search for Dijet Resonances in 7 TeV pp Collisions at CMS, Phys. Rev. Lett. 105 (2010) 211801 [arXiv:1010.0203] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    ATLAS collaboration, G. Aad et al., Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105 (2010) 161801 [arXiv:1008.2461] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    ATLAS collaboration, G. Aad, et al., Update of the search for new particles decaying into dijets in proton-proton collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, ATLAS Note (2010), ATLAS-CONF-2010-093.
  56. [56]
    S. Myers, Chamonix ’11 summary: proposals for decisions, talk at the LHC performance W orkshop, Chamonix France, January 24–28 2011, Indico.
  57. [57]
    D0 collaboration, V.M. Abazov et al., Search for resonant W W and W Z production in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, arXiv:1011.6278 [SPIRES].
  58. [58]
    CDF collaboration, A. Abulencia et al., Search for new physics in lepton + photon + X events with 929 pb −1 of \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 75 (2007) 112001 [hep-ex/0702029] [SPIRES].
  59. [59]
    The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].
  60. [60]
    S. Ferrara, M. Porrati and V.L. Telegdi, g = 2 as the natural value of the tree level gyromagnetic ratio of elementary particles, Phys. Rev. D 46 (1992) 3529 [SPIRES].ADSGoogle Scholar
  61. [61]
    A. Alves, O.J.P. Éboli, D. Goncalves, M.C. Gonzalez-Garcia and J.K. Mizukoshi, Signals for New Spin-1 Resonances in Electroweak Gauge Boson Pair Production at the LHC, Phys. Rev. D 80 (2009) 073011 [arXiv:0907.2915] [SPIRES].ADSGoogle Scholar
  62. [62]
    G. Azuelos et al., Exploring little Higgs models with ATLAS at the LHC, Eur. Phys. J. C 39S2 (2005) 13 [hep-ph/0402037] [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    S.-S. Bao, H.-L. Li, Z.-G. Si and Y.-F. Zhou, Probing W L WH and W R WH Interaction at LHC, Phys. Rev. D 83 (2011) 115001 [arXiv:1103.1688] [SPIRES].ADSGoogle Scholar
  64. [64]
    V.D. Barger, W.-Y. Keung and E. Ma, Gauge model with light W and Z bosons, Phys. Rev. D 22 (1980) 727 [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Christophe Grojean
    • 1
    • 2
  • Ennio Salvioni
    • 1
    • 3
  • Riccardo Torre
    • 1
    • 4
    • 5
  1. 1.Theory Division, Physics DepartmentCERNGeneva 23Switzerland
  2. 2.Institut de Physique ThéoriqueCEA SaclayGif-sur-Yvette CédexFrance
  3. 3.Dipartimento di Fisica and INFNUniversità di PadovaPadovaItaly
  4. 4.Dipartimento di Fisica and INFNUniversità di PisaPisaItaly
  5. 5.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland

Personalised recommendations