Holographic superconductors from Einstein-Maxwell-Dilaton gravity

Article

Abstract

We construct holographic superconductors from Einstein-Maxwell-dilaton gravity in 3 + 1 dimensions with two adjustable couplings α and the charge q carried by the scalar field. For the values of α and q we consider, there is always a critical temperature at which a second order phase transition occurs between a hairy black hole and the AdS RN black hole in the canonical ensemble, which can be identified with the superconducting phase transition of the dual field theory. We calculate the electric conductivity of the dual superconductor and find that for the values of α and q where α/q is small the dual superconductor has similar properties to the minimal model, while for the values of α and q where α/q is large enough, the electric conductivity of the dual superconductor exhibits novel properties at low frequencies where it shows a “Drude Peak” in the real part of the conductivity.

Keywords

Gauge-gravity correspondence Black Holes 

References

  1. [1]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  4. [4]
    J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES].
  5. [5]
    G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [SPIRES].
  6. [6]
    S. Sachdev, Condensed matter and AdS/ CFT, arXiv:1002.2947 [SPIRES].
  7. [7]
    M. Kaminski, Flavor Superconductivity & Superfluidity, arXiv:1002.4886 [SPIRES].
  8. [8]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  9. [9]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: Vector Hair for an AdS Black Hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].ADSGoogle Scholar
  11. [11]
    C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    O. Domenech, M. Montull, A. Pomarol, A. Salvio and P.J. Silva, Emergent Gauge Fields in Holographic Superconductors, arXiv:1005.1776 [SPIRES].
  13. [13]
    K. Maeda, M. Natsuume and T. Okamura, On two pieces of folklore in the AdS/ CFT duality, arXiv:1005.2431 [SPIRES].
  14. [14]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].ADSGoogle Scholar
  16. [16]
    G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    R.A. Konoplya and A. Zhidenko, Holographic conductivity of zero temperature superconductors, Phys. Lett. B 686 (2010) 199 [arXiv:0909.2138] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
  19. [19]
    M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].
  21. [21]
    J.-W. Chen, Y.-J. Kao and W.-Y. Wen, Peak-Dip-Hump from Holographic Superconductivity, arXiv:0911.2821 [SPIRES].
  22. [22]
    T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemission ‘experiments’ on holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [SPIRES]. CrossRefGoogle Scholar
  23. [23]
    S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, arXiv:0911.3632 [SPIRES].
  24. [24]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [SPIRES].CrossRefGoogle Scholar
  26. [26]
    J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards A Holographic Model of D-W ave Superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [SPIRES].ADSGoogle Scholar
  27. [27]
    C.P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [SPIRES].ADSGoogle Scholar
  28. [28]
    F. Benini, C.P. Herzog and A. Yarom, Holographic Fermi arcs and a d-wave gap, arXiv:1006.0731 [SPIRES].
  29. [29]
    S. Franco, A. Garcia-Garcia and D. Rodriguez-Gomez, A general class of holographic superconductors, JHEP 04 (2010) 092 [arXiv:0906.1214] [SPIRES].CrossRefGoogle Scholar
  30. [30]
    F. Aprile and J.G. Russo, Models of Holographic superconductivity, Phys. Rev. D 81 (2010) 026009 [arXiv:0912.0480] [SPIRES].ADSGoogle Scholar
  31. [31]
    F. Aprile, S. Franco, D. Rodriguez-Gomez and J.G. Russo, Phenomenological Models of Holographic Superconductors and Hall currents, JHEP 05 (2010) 102 [arXiv:1003.4487] [SPIRES]. CrossRefGoogle Scholar
  32. [32]
    Q. Pan and B. Wang, General holographic superconductor models with Gauss-Bonnet corrections, arXiv:1005.4743 [SPIRES].
  33. [33]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, arXiv:0911.3586 [SPIRES].
  34. [34]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Emergent Quantum Near-Criticality from Baryonic Black Branes, JHEP 03 (2010) 093 [arXiv:0911.0400] [SPIRES].CrossRefGoogle Scholar
  35. [35]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].ADSGoogle Scholar
  36. [36]
    M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [SPIRES]. CrossRefGoogle Scholar
  37. [37]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, arXiv:1005.4690 [SPIRES].
  38. [38]
    E. Perlmutter, Domain Wall Holography for Finite Temperature Scaling Solutions, arXiv:1006.2124 [SPIRES].
  39. [39]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].
  40. [40]
    C.-M. Chen and D.-W. Pang, Holography of Charged Dilaton Black Holes in General Dimensions, JHEP 06 (2010) 093 [arXiv:1003.5064] [SPIRES].CrossRefGoogle Scholar
  41. [41]
    R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional spacetimes, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    R.-G. Cai, J.-Y. Ji and K.-S. Soh, Topological dilaton black holes, Phys. Rev. D 57 (1998) 6547 [gr-qc/9708063] [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-Dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    B.-H. Lee, S. Nam, D.-W. Pang and C. Park, Conductivity in the anisotropic background, arXiv:1006.0779 [SPIRES].
  45. [45]
    N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, arXiv:1003.0010 [SPIRES].
  46. [46]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].CrossRefGoogle Scholar
  47. [47]
    G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].ADSGoogle Scholar
  48. [48]
    D.N. Basov and T. Timusk, Electrodynamics of high- Tc superconductors, Rev. Mod. Phys. 77 (2005) 721 [SPIRES]. CrossRefADSGoogle Scholar
  49. [49]
    P. Basu, J. He, A. Mukherjee, M. Rozali and H.-H. Shieh, Comments on Non-Fermi Liquids in the Presence of a Condensate, arXiv:1002.4929 [SPIRES].
  50. [50]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].CrossRefGoogle Scholar
  51. [51]
    D. Arean, M. Bertolini, J. Evslin and T. Prochazka, On Holographic Superconductors with DC Current, arXiv:1003.5661 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Key Laboratory of Frontiers in Theoretical PhysicsInstitute of Theoretical Physics, Chinese Academy of SciencesBeijingChina

Personalised recommendations