Advertisement

Neutrinoless double beta decay in seesaw models

  • Mattias BlennowEmail author
  • Enrique Fernandez-Martinez
  • Jacobo Lopez-Pavon
  • Javier Menéndez
Article

Abstract

We study the general phenomenology of neutrinoless double beta decay in seesaw models. In particular, we focus on the dependence of the neutrinoless double beta decay rate on the mass of the extra states introduced to account for the Majorana masses of light neutrinos. For this purpose, we compute the nuclear matrix elements as functions of the mass of the mediating fermions and estimate the associated uncertainties. We then discuss what can be inferred on the seesaw model parameters in the different mass regimes and clarify how the contribution of the light neutrinos should always be taken into account when deriving bounds on the extra parameters. Conversely, the extra states can also have a significant impact, canceling the Standard Model neutrino contribution for masses lighter than the nuclear scale and leading to unobservable neutrinoless double beta decay amplitudes even if neutrinos are Majorana particles. In particular, the decay rate is reduced by at least six orders of magnitude for masses of the extra states below 1 MeV in absence of extra contributions. We also discuss how seesaw models could reconcile large rates of neutrinoless double beta decay with more stringent cosmological bounds on neutrino masses.

Keywords

Beyond Standard Model Neutrino Physics 

References

  1. [1]
    W.C. Haxton and G.J. Stephenson, Double beta decay, Prog. Part. Nucl. Phys. 12 (1984) 409 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    M. Doi, T. Kotani and E. Takasugi, Double beta decay and Majorana neutrino, Prog. Theor. Phys. Suppl. 83 (1985) 1 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    T. Tomoda, Double beta decay, Rept. Prog. Phys. 54 (1991) 53 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    J. Suhonen and O. Civitarese, Weak-interaction and nuclear-structure aspects of nuclear double beta decay, Phys. Rept. 300 (1998) 123 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    A. Faessler and F. Simkovic, Double beta decay, J. Phys. G 24 (1998) 2139 [hep-ph/9901215] [SPIRES].ADSGoogle Scholar
  6. [6]
    J.D. Vergados, The neutrinoless double beta decay from a modern perspective, Phys. Rept. 361 (2002) 1 [hep-ph/0209347] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    F.T. Avignone III, S.R. Elliott and J. Engel, Double beta decay, Majorana neutrinos and neutrino mass, Rev. Mod. Phys. 80 (2008) 481 [arXiv:0708.1033] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    P. Vogel, Nuclear physics aspects of double beta decay, arXiv:0807.2457 [SPIRES].
  9. [9]
    S.M. Bilenky, Neutrinoless double beta decay, arXiv:1001.1946 [SPIRES].
  10. [10]
    J. Schechter and J.W.F. Valle, Neutrinoless double beta decay in SU(2) × U(1) theories, Phys. Rev. D 25 (1982) 2951 [SPIRES].ADSGoogle Scholar
  11. [11]
    H.V. Klapdor-Kleingrothaus et al., Latest results from the Heidelberg-Moscow double beta decay experiment, Eur. Phys. J. A 12 (2001) 147 [hep-ph/0103062] [SPIRES].ADSGoogle Scholar
  12. [12]
    IGEX collaboration, C.E. Aalseth et al., The IGEX 76 Ge neutrinoless double beta decay experiment: prospects for next generation experiments, Phys. Rev. D 65 (2002) 092007 [hep-ex/0202026] [SPIRES].ADSGoogle Scholar
  13. [13]
    CUORICINO collaboration, C. Arnaboldi et al., Results from a search for the 0νββ-decay of 130 Te, Phys. Rev. C 78 (2008) 035502 [arXiv:0802.3439] [SPIRES].ADSGoogle Scholar
  14. [14]
    NEMO collaboration, R. Arnold et al., Limits on different Majoron decay modes of 100 Mo and 82 Sefor neutrinoless double beta decays in the NEMO-3 experiment, Nucl. Phys. A 765 (2006) 483 [hep-ex/0601021] [SPIRES].ADSGoogle Scholar
  15. [15]
    NEMO collaboration, J. Argyriades et al., Measurement of the double beta decay half-life of 150 Nd and search for neutrinoless decay modes with the NEMO-3 detector, Phys. Rev. C 80 (2009) 032501 [arXiv:0810.0248] [SPIRES].ADSGoogle Scholar
  16. [16]
    S. Umehara et al., Neutrino-less double beta decay of 48 Ca studied by CaF 2 (Eu) scintillators, Phys. Rev. C 78 (2008) 058501 [arXiv:0810.4746] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    F.A. Danevich et al., Search for 2 beta decay of cadmium and tungsten isotopes: final results of the Solotvina experiment, Phys. Rev. C 68 (2003) 035501 [SPIRES].ADSGoogle Scholar
  18. [18]
    R. Bernabei et al., Results with the DAMA/LXe experiment at LNGS, Nucl. Phys. Proc. Suppl. 110 (2002) 88 [SPIRES].ADSGoogle Scholar
  19. [19]
    T. Bernatowicz et al., Precise determination of relative and absolute beta beta decay rates of 128 Te and 130 Te, Phys. Rev. C 47 (1993) 806 [SPIRES]. ADSGoogle Scholar
  20. [20]
    GERDA collaboration, S. Schonert et al., The GERmanium Detector Array (GERDA) for the search of neutrinoless beta beta decays of 76 Ge at LNGS, Nucl. Phys. Proc. Suppl. 145 (2005) 242 [SPIRES]. CrossRefADSGoogle Scholar
  21. [21]
    D. Akimov et al., EXO: an advanced enriched xenon double-beta decay observatory, Nucl. Phys. Proc. Suppl. 138 (2005) 224 [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    M.C. Chen, The SNO liquid scintillator project, Nucl. Phys. Proc. Suppl. 145 (2005) 65 [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    CUORE collaboration, C. Arnaboldi et al., CUORE: a cryogenic underground observatory for rare events, Nucl. Instrum. Meth. A 518 (2004) 775 [hep-ex/0212053] [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Umehara et al., CANDLES for double beta decay of 48 Ca, J. Phys. Conf. Ser. 39 (2006) 356 [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    NEMO collaboration, A.S. Barabash, The extrapolation of NEMO techniques to future generation double beta decay experiments, Phys. Atom. Nucl. 67 (2004) 1984 [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    Majorana collaboration, R. Gaitskell et al., White paper on the Majorana zero-neutrino double beta decay experiment, nucl-ex/0311013 [SPIRES].
  27. [27]
    J. Diaz et al., The NEXT experiment, J. Phys. Conf. Ser. 179 (2009) 012005 [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    Y.G. Zdesenko et al., CARVEL experiment with 48 CaWO 4 crystal scintillators for the double beta decay study of 48 Ca, A stropart. Phys. 23 (2005) 249 [SPIRES].ADSGoogle Scholar
  29. [29]
    COBRA collaboration, T. Bloxham et al., First results on double beta decay modes of Cd, Te and Zn isotopes with the COBRA experiment, Phys. Rev. C 76 (2007) 025501 [arXiv:0707.2756] [SPIRES].ADSGoogle Scholar
  30. [30]
    DCBA collaboration, N. Ishihara, Flavor violation in double beta decay, prepared for Workshop on Neutrino Oscillations and Their Origin, Fujiyoshida J apan February 11–13 2000 [SPIRES].
  31. [31]
    H. Nakamura et al., Multilayer scintillator responses for Mo observatory of neutrino experiment studied using a prototype detector MOON-1, J. Phys. Soc. Jap. 76 (2007) 114201 [nucl-ex/0609008] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    Y. Takeuchi, Recent status of the XMASS project, prepared for 32nd International Conference on High-Energy Physics (ICHEP 04), Beijing China August 16–22 2004 [SPIRES].
  33. [33]
    H.V. Klapdor-Kleingrothaus, A. Dietz, H.L. Harney and I.V. Krivosheina, Evidence for neutrinoless double beta decay, Mod. Phys. Lett. A 16 (2001) 2409 [hep-ph/0201231] [SPIRES].ADSGoogle Scholar
  34. [34]
    H.V. Klapdor-Kleingrothaus and I.V. Krivosheina, The evidence for the observation of 0νββ decay: the identification of 0νββ events from the full spectra, Mod. Phys. Lett. A 21 (2006) 1547 [SPIRES]. ADSGoogle Scholar
  35. [35]
    S. Hannestad, A. Mirizzi, G.G. Raffelt and Y.Y.Y. Wong, Neutrino and axion hot dark matter bounds after WMAP-7, arXiv:1004.0695 [SPIRES].
  36. [36]
    E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, arXiv:1001.4538 [SPIRES].
  37. [37]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES]. ADSGoogle Scholar
  38. [38]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan February 13–14 1979 [SPIRES].
  39. [39]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES]. CrossRefADSGoogle Scholar
  40. [40]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, PRINT-80-0576-CERN, Cern, Switzerland (1979) [SPIRES]. Google Scholar
  41. [41]
    J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez and J.W.F. Valle, Lepton flavor nonconservation at high-energies in a superstring inspired standard model, Phys. Lett. B 187 (1987) 303 [SPIRES]. ADSGoogle Scholar
  42. [42]
    G.C. Branco, W. Grimus and L. Lavoura, The seesaw mechanism in the presence of a conserved lepton number, Nucl. Phys. B 312 (1989) 492 [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    P. Benes, A. Faessler, F. Simkovic and S. Kovalenko, Sterile neutrinos in neutrinoless double beta decay, Phys. Rev. D 71 (2005) 077901 [hep-ph/0501295] [SPIRES].ADSGoogle Scholar
  44. [44]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    G. Bélanger, F. Boudjema, D. London and H. Nadeau, Inverse neutrinoless double beta decay revisited, Phys. Rev. D 53 (1996) 6292 [hep-ph/9508317] [SPIRES].ADSGoogle Scholar
  46. [46]
    F. Simkovic, G. Pantis, J.D. Vergados and A. Faessler, Additional nucleon current contributions to neutrinoless double beta decay, Phys. Rev. C 60 (1999) 055502 [hep-ph/9905509] [SPIRES].ADSGoogle Scholar
  47. [47]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menéndez, Nuclear matrix elements as a function of the neutrino mass Mnu for the neutrinoless double beta decays of 48 Ca, 76 Ge, 82 Se, 124 Sn, 130 Te and 136 Xe, http://wwwth.mppmu.mpg.de/members/blennow/nme_mnu.dat, (2010).
  49. [49]
    I.S. Towner and J.C. Hardy, Currents and their couplings in the weak sector of the standard model, in Symmetries and fundamental interactions in nuclei, chapter Currents and their couplings in the weak sector of the standard model, W.C. Haxton and E.M. Henley eds., World Scientific Publishing Company, Singapore (1995), pg. 183 [nucl-th/9504015] [SPIRES]. Google Scholar
  50. [50]
    J.D. Vergados, Lepton violating β β , β + β + decays, (e ,e + ) conversion and double electron capture in gauge theories, Nucl. Phys. B 218 (1983) 109 [SPIRES]. CrossRefADSGoogle Scholar
  51. [51]
    O. Dumbrajs et al., Compilation of coupling constants and low-energy parameters. 1982 edition, Nucl. Phys. B 216 (1983) 277 [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    L.A. Ahrens et al., A study of the axial vector form-factor and second class currents in anti-neutrino quasielastic scattering, Phys. Lett. B 202 (1988) 284 [SPIRES].Google Scholar
  53. [53]
    F. Simkovic, A. Faessler, V. Rodin, P. Vogel and J. Engel, Anatomy of nuclear matrix elements for neutrinoless double beta decay, Phys. Rev. C 77 (2008) 045503 [arXiv:0710.2055] [SPIRES].ADSGoogle Scholar
  54. [54]
    J. Menéndez, A. Poves, E. Caurier and F. Nowacki, Disassembling the nuclear matrix elements of the neutrinoless double beta decay, Nucl. Phys. A 818 (2009) 139 [arXiv:0801.3760] [SPIRES].ADSGoogle Scholar
  55. [55]
    K. Muto, Neutrinoless double beta decay beyond closure approximation, Nucl. Phys. A 577 (1994) 415c [SPIRES]. ADSGoogle Scholar
  56. [56]
    M. Hjorth-Jensen, T.T.S. Kuo and E. Osnes, Realistic effective interactions for nuclear systems, Phys. Rept. 261 (1995) 125 [SPIRES].CrossRefGoogle Scholar
  57. [57]
    J. Engel and G. Hagen, Corrections to the neutrinoless double beta decay operator in the shell model, Phys. Rev. C 79 (2009) 064317 [arXiv:0904.1709] [SPIRES].ADSGoogle Scholar
  58. [58]
    F. Simkovic, A. Faessler, H. Muther, V. Rodin and M. Stauf, The 0νββ-decay nuclear matrix elements with self-consistent short-range correlations, Phys. Rev. C 79 (2009) 055501 [arXiv:0902.0331] [SPIRES].ADSGoogle Scholar
  59. [59]
    H.F. Wu, H.Q. Song, T.T.S. Kuo, W.K. Cheng and D. Strottman, Majorana neutrino and lepton number nonconservation in 48 Ca nuclear double beta decay, Phys. Lett. B 162 (1985) 227 [SPIRES]. ADSGoogle Scholar
  60. [60]
    M. Kortelainen, O. Civitarese, J. Suhonen and J. Toivanen, Short-range correlations and neutrinoless double beta decay, Phys. Lett. B 647 (2007) 128 [nucl-th/0701052] [SPIRES].ADSGoogle Scholar
  61. [61]
    R. Roth, H. Hergert, P. Papakonstantinou, T. Neff and H. Feldmeier, Matrix elements and few-body calculations within the unitary correlation operator method, Phys. Rev. C 72 (2005) 034002 [nucl-th/0505080] [SPIRES].ADSGoogle Scholar
  62. [62]
    E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves and A.P. Zuker, The shell model as unified view of nuclear structure, Rev. Mod. Phys. 77 (2005) 427 [nucl-th/0402046] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    E. Caurier, J. Menéndez, F. Nowacki and A. Poves, The influence of pairing on the nuclear matrix elements of the neutrinoless double beta decays, Phys. Rev. Lett. 100 (2008) 052503 [arXiv:0709.2137] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    F. Simkovic, A. Faessler and P. Vogel, 0νββ nuclear matrix elements and the occupancy of individual orbits, Phys. Rev. C 79 (2009) 015502 [arXiv:0812.0348] [SPIRES].ADSGoogle Scholar
  65. [65]
    J. Menéndez, A. Poves, E. Caurier and F. Nowacki, The occupancies of individual orbits and the nuclear matrix element of the 76 Ge neutrinoless ββ decay, Phys. Rev. C 80 (2009) 048501 [arXiv:0906.0179] [SPIRES].ADSGoogle Scholar
  66. [66]
    A. Poves and A. Zuker, Theoretical spectroscopy and the fp shell, Phys. Rept. 70 (1981) 235 [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    M. Doi, T. Kotani, H. Nishiura, K. Okuda and E. Takasugi, Neutrino mass, the right-handed interaction and the double beta decay. 2. General properties and data analysis, Prog. Theor. Phys. 66 (1981) 1765 [Erratum ibid. 68 (1982) 348] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    E. Caurier, F. Nowacki and A. Poves, Nuclear structure aspects of the neutrinoless double beta decay, Eur. Phys. J. A 36 (2008) 195 [arXiv:0709.0277] [SPIRES].ADSGoogle Scholar
  69. [69]
    K.S. Kuzmin, V.V. Lyubushkin and V.A. Naumov, Quasielastic axial-vector mass from experiments on neutrino-nucleus scattering, Eur. Phys. J. C 54 (2008) 517 [arXiv:0712.4384] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    V.A. Rodin, A. Faessler, F. Simkovic and P. Vogel, Assessment of uncertainties in QRPA 0νββ-decay nuclear matrix elements, Nucl. Phys. A 766 (2006) 107 [Erratum ibid. A 793 (2007) 213] [arXiv:0706.4304] [SPIRES].ADSGoogle Scholar
  71. [71]
    M. Horoi and S. Stoica, Shell model analysis of the neutrinoless double beta decay of 48 Ca, Phys. Rev. C 81 (2010) 024321 [arXiv:0911.3807] [SPIRES].ADSGoogle Scholar
  72. [72]
    G. Prezeau, M. Ramsey-Musolf and P. Vogel, Neutrinoless double beta decay and effective field theory, Phys. Rev. D 68 (2003) 034016 [hep-ph/0303205] [SPIRES].ADSGoogle Scholar
  73. [73]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].CrossRefGoogle Scholar
  74. [74]
    P.J.E. Peebles, Primeval adiabatic perturbations: effect of massive neutrinos, Astrophys. J. 258 (1982) 415 [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    K.A. Olive and M.S. Turner, Cosmological bounds on the masses of stable, right-handed neutrinos, Phys. Rev. D 25 (1982) 213 [SPIRES].ADSGoogle Scholar
  76. [76]
    S. Dodelson and L.M. Widrow, Sterile neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [SPIRES].CrossRefADSGoogle Scholar
  77. [77]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].CrossRefADSGoogle Scholar
  78. [78]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].ADSGoogle Scholar
  79. [79]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  80. [80]
    C. Wetterich, Neutrino masses and the scale of B-L violation, Nucl. Phys. B 187 (1981) 343 [SPIRES].CrossRefADSGoogle Scholar
  81. [81]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [SPIRES].CrossRefADSGoogle Scholar
  82. [82]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [SPIRES].ADSGoogle Scholar
  83. [83]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
  84. [84]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].CrossRefADSGoogle Scholar
  85. [85]
    E. Ma and D.P. Roy, Heavy triplet leptons and new gauge boson, Nucl. Phys. B 644 (2002) 290 [hep-ph/0206150] [SPIRES].CrossRefADSGoogle Scholar
  86. [86]
    T. Hambye, Y. Lin, A. Notari, M. Papucci and A. Strumia, Constraints on neutrino masses from leptogenesis models, Nucl. Phys. B 695 (2004) 169 [hep-ph/0312203] [SPIRES].CrossRefADSGoogle Scholar
  87. [87]
    S.T. Petcov, H. Sugiyama and Y. Takanishi, Neutrinoless double beta decay and H ±±l± l ± decays in the Higgs triplet model, Phys. Rev. D 80 (2009) 015005 [arXiv:0904.0759] [SPIRES].ADSGoogle Scholar
  88. [88]
    A. Halprin, S.T. Petcov and S.P. Rosen, Effects of light and heavy Majorana neutrinos in neutrinoless double beta decay, Phys. Lett. B 125 (1983) 335 [SPIRES].ADSGoogle Scholar
  89. [89]
    C.N. Leung and S.T. Petcov, On the possibility of destructive interference between light and heavy Majorana neutrinos in neutrinoless double beta decay, Phys. Lett. B 145 (1984) 416 [SPIRES].ADSGoogle Scholar
  90. [90]
    P. Bamert, C.P. Burgess and R.N. Mohapatra, Heavy sterile neutrinos and neutrinoless double beta decay, Nucl. Phys. B 438 (1995) 3 [hep-ph/9408367] [SPIRES].CrossRefADSGoogle Scholar
  91. [91]
    A. de Gouvêa, J. Jenkins and N. Vasudevan, Neutrino phenomenology of very low-energy seesaws, Phys. Rev. D 75 (2007) 013003 [hep-ph/0608147] [SPIRES].ADSGoogle Scholar
  92. [92]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES]. ADSGoogle Scholar
  93. [93]
    S.L. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D2 (1970) 1285 [SPIRES].ADSGoogle Scholar
  94. [94]
    S. Pascoli and S.T. Petcov, Majorana neutrinos, neutrino mass spectrum and the |〈m〉| ∼ 10−3 eV frontier in neutrinoless double beta decay, Phys. Rev. D 77 (2008) 113003 [arXiv:0711.4993] [SPIRES].ADSGoogle Scholar
  95. [95]
    Z.-Z. Xing, Low-energy limits on heavy Majorana neutrino masses from the neutrinoless double beta decay and non-unitary neutrino mixing, Phys. Lett. B 679 (2009) 255 [arXiv:0907.3014] [SPIRES].ADSGoogle Scholar
  96. [96]
    A. Faessler et al., QRPA uncertainties and their correlations in the analysis of neutrinoless double beta decay, Phys. Rev. D 79 (2009) 053001 [arXiv:0810.5733] [SPIRES].ADSGoogle Scholar
  97. [97]
    G.L. Fogli et al., Observables sensitive to absolute neutrino masses (addendum), Phys. Rev. D 78 (2008) 033010 [arXiv:0805.2517] [SPIRES].ADSGoogle Scholar
  98. [98]
    D0 collaboration, V.M. Abazov et al., Search for pair production of doubly-charged Higgs bosons in the H ++ H −−μ + μ + μ μ final state at D0, Phys. Rev. Lett. 101 (2008) 071803 [arXiv:0803.1534] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Mattias Blennow
    • 1
    Email author
  • Enrique Fernandez-Martinez
    • 1
  • Jacobo Lopez-Pavon
    • 2
    • 3
  • Javier Menéndez
    • 2
    • 3
    • 4
    • 5
  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany
  2. 2.Departamento de Física TeóricaUniversidad Autónoma de MadridCantoblancoMadridSpain
  3. 3.Instituto Física Teórica UAM/CSICMadridSpain
  4. 4.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  5. 5.ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany

Personalised recommendations