Form factors of descendant operators: \( A_{L - 1}^{(1)} \) affine Toda theory

Article

Abstract

In the framework of the free field representation we obtain exact form factors of local operators in the two-dimensional affine Toda theories of the \( A_{L - 1}^{(1)} \) series. The construction generalizes Lukyanov’s well-known construction to the case of descendant operators. Besides, we propose a free field representation with a countable number of generators for the ‘stripped’ form factors, which generalizes the recent proposal for the sine/sinh-Gordon model. As a check of the construction we compare numbers of the operators defined by these form factors in level subspaces of the chiral sectors with the corresponding numbers in the Lagrangian formalism. We argue that the construction provides a correct counting for operators with both chiralities. At last we study the properties of the operators with respect to the Weyl group. We show that for generic values of parameters there exist Weyl invariant analytic families of the bases in the level subspaces.

Keywords

Field Theories in Lower Dimensions Integrable Field Theories 

References

  1. [1]
    M. Karowski and P. Weisz, Exact form-factors in (1+ 1)-dimensional field theoretic models with soliton behavior, Nucl. Phys. B 139 (1978) 455 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    F.A. Smirnov, The quantum Gelfand-Levitan-Marchenko equations and form-factors in the sine-Gordon model, J. Phys. A 17 (1984) L873 [SPIRES]. ADSGoogle Scholar
  3. [3]
    F.A. Smirnov, Form factors in completely integrable models of quantum field theory, World Scientific, Singapore (1992).MATHGoogle Scholar
  4. [4]
    A.E. Arinshtein, V.A. Fateev and A.B. Zamolodchikov, Quantum s matrix of the (1+ 1)-dimensional Todd chain, Phys. Lett. B 87 (1979) 389 [SPIRES]. ADSGoogle Scholar
  5. [5]
    A. Koubek and G. Mussardo, On the operator content of the sinh-Gordon model, Phys. Lett. B 311 (1993) 193 [hep-th/9306044] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    S.L. Lukyanov, Form factors of exponential fields in the sine-Gordon model, Mod. Phys. Lett. A 12 (1997) 2543 [hep-th/9703190] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    H.M. Babujian and M. Karowski, The exact quantum sine-Gordon field equation and other non-perturbative results, Phys. Lett. B 471 (1999) 53 [hep-th/9909153] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    H. Babujian and M. Karowski, Sine-Gordon breather form factors and quantum field equations, J. Phys. A 35 (2002) 9081 [hep-th/0204097] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    B. Feigin and M. Lashkevich, Form factors of descendant operators: Free field construction and reflection relations, J. Phys. A 42 (2009) 304014 [arXiv:0812.4776] [SPIRES].MathSciNetGoogle Scholar
  10. [10]
    H. Babujian and M. Karowski, Exact form factors for the scaling Z N -Ising and the affine A N−1-Toda quantum field theories, Phys. Lett. B 575 (2003) 144 [hep-th/0309018] [SPIRES]. MathSciNetADSGoogle Scholar
  11. [11]
    S.L. Lukyanov, Free field representation for massive integrable models, Commun. Math. Phys. 167 (1995) 183 [hep-th/9307196] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  12. [12]
    S.L. Lukyanov, Form-factors of exponential fields in the affine \( A_{N - 1}^{(1)} \) Toda model, Phys. Lett. B 408 (1997) 192 [hep-th/9704213] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    A.B. Zamolodchikov and Al.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    V. Fateev, S.L. Lukyanov, A.B. Zamolodchikov and Al.B. Zamolodchikov, Expectation values of boundary fields in the boundary sine-Gordon model, Phys. Lett. B 406 (1997) 83 [hep-th/9702190] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    V. Fateev, S.L. Lukyanov, A.B. Zamolodchikov and Al.B. Zamolodchikov, Expectation values of local fields in Bullough-Dodd model and integrable perturbed conformal field theories, Nucl. Phys. B 516 (1998) 652 [hep-th/9709034] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    C. Ahn, V.A. Fateev, C. Kim, C. Rim and B. Yang, Reflection amplitudes of ADE Toda theories and thermodynamic Bethe ansatz, Nucl. Phys. B 565 (2000) 611 [hep-th/9907072] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    V.A. Fateev, The exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories, Phys. Lett. B 324 (1994) 45 [SPIRES]. MathSciNetADSGoogle Scholar
  18. [18]
    M.R. Niedermaier, The spectrum of the conserved charges in affine Toda theories, DESY-92-105 (1992).
  19. [19]
    M.R. Niedermaier, The quantum spectrum of the conserved charges in affine Toda theories, Nucl. Phys. B 424 (1994) 184 [hep-th/9401078] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    G. Delfino and G. Niccoli, Form factors of descendant operators in the massive Lee-Yang model, J. Stat. Mech. (2005) P04004 [hep-th/0501173] [SPIRES].
  21. [21]
    V.A. Fateev, V.V. Postnikov and Y.P. Pugai, On scaling fields in Z N Ising models, JET P Lett. 83 (2006) 172 [hep-th/0601073] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    V.A. Fateev and Y.P. Pugai, Correlation functions of disorder fields and parafermionic currents in Z N Ising models, arXiv:0909.3347 [SPIRES].
  23. [23]
    V.A. Fateev, Normalization factors, reflection amplitudes and integrable systems, hep-th/0103014 [SPIRES].
  24. [24]
    V. Fateev, D. Fradkin, S.L. Lukyanov, A.B. Zamolodchikov and Al.B. Zamolodchikov, Expectation values of descendent fields in the sine-Gordon model, Nucl. Phys. B 540 (1999) 587 [hep-th/9807236] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    H. Boos, M. Jimbo, T. Miwa and F. Smirnov, Hidden Grassmann structure in the XXZ model IV: CFT limit, arXiv:0911.3731 [SPIRES].
  26. [26]
    M. Jimbo, T. Miwa and F. Smirnov, On one-point functions of descendants in sine-Gordon model, arXiv:0912.0934 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovka of Moscow RegionRussia

Personalised recommendations