Decompactifications and massless D-branes in hybrid models



A method of determining the mass spectrum of BPS D-branes in any phase limit of a gauged linear sigma model is introduced. A ring associated to monodromy is defined and one considers K-theory to be a module over this ring. A simple but interesting class of hybrid models with Landau-Ginzburg fibres over \( {\mathbb{P}^n} \) are analyzed using special Kähler geometry and D-brane probes. In some cases the hybrid limit is an infinite distance in moduli space and corresponds to a decompactification. In other cases the hybrid limit isat a finite distance and acquires massless D-branes. An example studied appears to correspond to a novel theory of supergravity with an SU(2) gauge symmetry where the gauge and gravitational couplings are necessarily tied to each other.


D-branes Superstring Vacua Differential and Algebraic Geometry 


  1. [1]
    E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, Multiple mirror manifolds and topology change in string theory, Phys. Lett. B 303 (1993) 249 [hep-th/9301043] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    M. Herbst, K. Hori and D. Page, Phases of N = 2 theories in 1+ 1 dimensions with boundary, arXiv:0803.2045 [SPIRES].
  4. [4]
    P.S. Aspinwall and B.R. Greene, On the geometric interpretation of N = 2 superconformal theories, Nucl. Phys. B 437 (1995) 205 [hep-th/9409110] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    A. Caldararu, J. Distler, S. Hellerman, T. Pantev and E. Sharpe, Non-birational twisted derived equivalences in Abelian GLSMs, Commun. Math. Phys. 294 (2010) 605 [arXiv:0709.3855] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [SPIRES]. CrossRefADSGoogle Scholar
  7. [7]
    P.S. Aspinwall, D-branes on toric Calabi-Yau varieties, arXiv:0806.2612 [SPIRES].
  8. [8]
    D.A. Cox, The homogeneous coordinate ring of a toric variety, revised version, J. Alg. Geom. 4 (1995) 17 [alg-geom/9210008] [SPIRES].
  9. [9]
    A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties, alg-geom/9506012.
  10. [10]
    P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in Progress in string theory. TASI 2003 Lecture Notes, J.M. Maldacena ed., World Scientific, Singapore (2005), pg. 1 [hep-th/0403166] [SPIRES].CrossRefGoogle Scholar
  11. [11]
    D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, math.AG/0503632.
  12. [12]
    P.S. Aspinwall, Topological D-branes and commutative algebra, submitted to Commun. Num. Theor. Phys. [hep-th/0703279] [SPIRES].
  13. [13]
    D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980) 35.MATHMathSciNetGoogle Scholar
  14. [14]
    L.L. Avramov and D.R. Grayson, Resolutions and cohomology over complete intersections, in Computations in algebraic geometry with Macaulay 2, D. Eisenbud et al. eds., Algorithms and Computations in Mathematics 8, Springer-Verlag, London U.K. (2002), pg. 131.Google Scholar
  15. [15]
    T.H. Gulliksen, A change of ring theorem with applications to Poincaré series and and intersection multiplicity, Math. Scand. 34 (1974) 167.MATHMathSciNetGoogle Scholar
  16. [16]
    D.R. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993) 223 [alg-geom/9202004]. MathSciNetGoogle Scholar
  17. [17]
    P.S. Aspinwall, The Landau-Ginzburg to Calabi-Yau dictionary for D-branes, J. Math. Phys. 48 (2007) 082304 [hep-th/0610209] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    A. Libgober and J. Teitelbaum, Lines on Calabi-Yau complete intersections, mirror symmetry, and Picard-Fuchs equations, Int. Math. Res. Not. 1993 (1993) 29 [alg-geom/9301001] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    N. Seiberg, Observations on the moduli space of superconformal field theories, Nucl. Phys. B 303 (1988) 286 [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    C. Vafa, Superstring vacua, presented at Symposium on Fields, Strings and Quantum Gravity, Beijing China May 29–June 10 1989 [SPIRES].
  21. [21]
    P. Candelas, E. Derrick and L. Parkes, Generalized Calabi-Yau manifolds and the mirror of a rigid manifold, Nucl. Phys. B 407 (1993) 115 [hep-th/9304045] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    S. Sethi, Supermanifolds, rigid manifolds and mirror symmetry, Nucl. Phys. B 430 (1994) 31 [hep-th/9404186] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    P.S. Aspinwall, K3 surfaces and string duality, in Fields, strings and duality, TASI 1996, C. Efthimiou and B. Greene eds., World Scientific, Singapore (1997), pg. 421 [hep-th/9611137] [SPIRES].Google Scholar
  24. [24]
    P.S. Aspinwall, Probing geometry with stability conditions, arXiv:0905.3137 [SPIRES].
  25. [25]
    D.S. Dummit and R.M. Foote, Abstract algebra, Prentice Hall, U.S.A. (2003).Google Scholar
  26. [26]
    P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355 (1991) 455 [SPIRES]. CrossRefADSGoogle Scholar
  27. [27]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, Measuring small distances in N = 2 σ-models, Nucl. Phys. B 420 (1994) 184 [hep-th/9311042] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    P.S. Aspinwall, Minimum distances in nontrivial string target spaces, Nucl. Phys. B 431 (1994) 78 [hep-th/9404060] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    M.R. Douglas, D-branes, categories and N = 1 supersymmetry, J. Math. Phys. 42 (2001) 2818 [hep-th/0011017] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  30. [30]
    N. Addington, The derived category of the intersection of four quadrics, arXiv:0904.1764.
  31. [31]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    P.S. Aspinwall, Enhanced gauge symmetries and Calabi-Yau threefolds, Phys. Lett. B 371 (1996) 231 [hep-th/9511171] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    S.H. Katz, D.R. Morrison and M. Ronen Plesser, Enhanced gauge symmetry in type II string theory, Nucl. Phys. B 477 (1996) 105 [hep-th/9601108] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    R.P. Horja, Derived category automorphisms from mirror symmetry, math.AG/0103231 [SPIRES].
  37. [37]
    P.S. Aspinwall, R.L. Karp and R.P. Horja, Massless D-branes on Calabi-Yau threefolds and monodromy, Commun. Math. Phys. 259 (2005) 45 [hep-th/0209161] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  38. [38]
    S. Kachru and C. Vafa, Exact results for N = 2 compactifications of heterotic strings, Nucl. Phys. B 450 (1995) 69 [hep-th/9505105] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative results on the point particle limit of N = 2 heterotic string compactifications, Nucl. Phys. B 459 (1996) 537 [hep-th/9508155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Center for Geometry and Theoretical PhysicsDuke UniversityDurhamU.S.A.

Personalised recommendations