NLO QCD corrections to WZ+jet production with leptonic decays

  • Francisco Campanario
  • Christoph Englert
  • Stefan Kallweit
  • Michael Spannowsky
  • Dieter Zeppenfeld
Article

Abstract

We compute the next-to-leading order QCD corrections to WZ+jet production at the Tevatron and the LHC, including decays of the electroweak bosons to light leptons with all off-shell effects taken into account. The corrections are sizable and have significant impact on the differential distributions.

Keywords

NLO Computations QCD Jets 

References

  1. [1]
    J.M. Campbell, R. Keith Ellis and G. Zanderighi, Next-to-leading order predictions for WW + 1 jet distributions at the LHC, JHEP 12 (2007) 056 [arXiv:0710.1832] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to WW+jet production at hadron colliders, Phys. Rev. Lett. 100 (2008) 062003 [arXiv:0710.1577] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to \( {{{pp}} \left/ {{p\overline p }} \right.} \)WW+jet+X including leptonic W-boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    F. Campanario, C. Englert, M. Spannowsky and D. Zeppenfeld, NLO-QCD corrections to Wγj production, Europhys. Lett. 88 (2009) 11001 [arXiv:0908.1638] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ+jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [SPIRES].ADSGoogle Scholar
  6. [6]
    H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-Report 91-11 (1992) [SPIRES].
  7. [7]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    G. Bozzi, B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W+Z and W-Z production via vector-boson fusion, Phys. Rev. D 75 (2007) 073004 [hep-ph/0701105] [SPIRES].ADSGoogle Scholar
  10. [10]
    C. Englert, B. Jager and D. Zeppenfeld, QCD corrections to vector-boson fusion processes in warped Higgsless models, JHEP 03 (2009) 060 [arXiv:0812.2564] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    C. Englert, B. Jager, M. Worek and D. Zeppenfeld, Observing strongly interacting vector boson systems at the CERN Large Hadron Collider, Phys. Rev. D 80 (2009) 035027 [arXiv:0810.4861] [SPIRES].ADSGoogle Scholar
  12. [12]
    C. Englert, B. Jager, M. Worek and D. Zeppenfeld, Strongly interacting gauge boson systems at the LHC, arXiv:0904.2119 [SPIRES].
  13. [13]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].MATHCrossRefADSGoogle Scholar
  16. [16]
    G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ+μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    A. Denner and S. Dittmaier, Reduction of one-loop tensor 5-point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    K. Hagiwara and D. Zeppenfeld, Amplitudes for multiparton processes involving a current at e + e , e ± p and hadron colliders, Nucl. Phys. B 313 (1989) 560 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 150 (1998) 503] [hep-ph/9605323] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    T. Figy, V. Hankele and D. Zeppenfeld, Next-to-leading order QCD corrections to Higgs plus three jet production in vector-boson fusion, JHEP 02 (2008) 076 [arXiv:0710.5621] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    S. Dittmaier, Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1999) 016007 [hep-ph/9805445] [SPIRES].ADSGoogle Scholar
  24. [24]
    T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    G.J. van Oldenborgh and J.A.M. Vermaseren, New algorithms for one loop integrals, Z. Phys. C 46 (1990) 425 [SPIRES].Google Scholar
  26. [26]
    G.J. van Oldenborgh, FF: a package to evaluate one loop Feynman diagrams, Comput. Phys. Commun. 66 (1991) 1 [SPIRES].MATHCrossRefADSGoogle Scholar
  27. [27]
    S. Dittmaier, Separation of soft and collinear singularities from one- loop N-point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    F.A. Berends, R. Pittau and R. Kleiss, All electroweak four fermion processes in electron-positron collisions, Nucl. Phys. B 424 (1994) 308 [hep-ph/9404313] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun. 83 (1994) 141 [hep-ph/9405257] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + gamma, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W and Z production via vector-boson fusion, Phys. Rev. D 69 (2004) 093004 [hep-ph/0310156] [SPIRES].ADSGoogle Scholar
  34. [34]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].ADSGoogle Scholar
  36. [36]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    J. Bagger et al., The strongly interacting W W system: gold plated modes, Phys. Rev. D 49 (1994) 1246 [hep-ph/9306256] [SPIRES].ADSGoogle Scholar
  38. [38]
    J. Bagger et al., CERN LHC analysis of the strongly interacting W W system: gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Francisco Campanario
    • 1
  • Christoph Englert
    • 1
    • 2
  • Stefan Kallweit
    • 3
  • Michael Spannowsky
    • 4
  • Dieter Zeppenfeld
    • 1
  1. 1.Institute for Theoretical PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute for Theoretical PhysicsHeidelberg UniversityHeidelbergGermany
  3. 3.Paul Scherrer InstituteWürenlingen and VilligenVilligen PSISwitzerland
  4. 4.Institute of Theoretical ScienceUniversity of OregonEugeneU.S.A.

Personalised recommendations