Generalized hidden symmetries and the Kerr-Sen black hole

  • Tsuyoshi Houri
  • David Kubizňák
  • Claude M. Warnick
  • Yukinori Yasui


We elaborate on basic properties of generalized Killing-Yano tensors which naturally extend Killing-Yano symmetry in the presence of skew-symmetric torsion. In particular, we discuss their relationship to Killing tensors and the separability of various field equations. We further demonstrate that the Kerr-Sen black hole spacetime of heterotic string theory, as well as its generalization to all dimensions, possesses a generalized closed conformal Killing-Yano 2-form with respect to a torsion identified with the 3-form occuring naturally in the theory. Such a 2-form is responsible for complete integrability of geodesic motion as well as for separability of the scalar and Dirac equations in these spacetimes.


Black Holes in String Theory Space-Time Symmetries 


  1. [1]
    K. Yano, Some remarks on tensor fields and curvature, Annals Math. 55 (1952) 328.CrossRefGoogle Scholar
  2. [2]
    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  3. [3]
    G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, Rotating black holes in higher dimensions with a cosmological constant, Phys. Rev. Lett. 93 (2004) 171102 [hep-th/0409155] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    W. Chen, H. Lü and C.N. Pope, General Kerr-NUT-AdS metrics in all dimensions, Class. Quant. Grav. 23 (2006) 5323 [hep-th/0604125] [SPIRES].MATHCrossRefADSGoogle Scholar
  5. [5]
    D. Kubizňák and V.P. Frolov, Hidden symmetry of higher dimensional Kerr-NUT-AdS spacetimes, Class. Quant. Grav. 24 (2007) F1 [gr-qc/0610144] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    D.N. Page, D. Kubizňák, M. Vasudevan and P. Krtouš, Complete integrability of geodesic motion in general Kerr-NUT-AdS spacetimes, Phys. Rev. Lett. 98 (2007) 061102 [hep-th/0611083] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    P. Krtouš, D. Kubizňák, D.N. Page and V.P. Frolov, Killing-Yano tensors, rank-2 Killing tensors and conserved quantities in higher dimensions, JHEP 02 (2007) 004 [hep-th/0612029] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    T. Houri, T. Oota and Y. Yasui, Closed conformal Killing-Yano tensor and geodesic integrability, J. Phys. A 41 (2008) 025204 [arXiv:0707.4039] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    V.P. Frolov, P. Krtouš and D. Kubizňák, Separability of Hamilton-Jacobi and Klein-Gordon equations in general Kerr-NUT-AdS spacetimes, JHEP 02 (2007) 005 [hep-th/0611245] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    A. Sergyeyev and P. Krtouš, Complete set of commuting symmetry operators for the Klein-Gordon equation in generalized higher-dimensional Kerr-NUT-(A)dS spacetimes, Phys. Rev. D 77 (2008) 044033 [arXiv:0711.4623] [SPIRES].ADSGoogle Scholar
  11. [11]
    T. Oota and Y. Yasui, Separability of Dirac equation in higher dimensional Kerr-NUT-de Sitter spacetime, Phys. Lett. B 659 (2008) 688 [arXiv:0711.0078] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    S.-Q. Wu, Symmetry operators and separability of the massive Dirac’s equation in the general 5-dimensional Kerr-(anti-)de Sitter black hole background, Class. Quant. Grav. 26 (2009) 055001 [Erratum ibid. 26 (2009) 189801] [arXiv:0808.3435] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    N. Hamamoto, T. Houri, T. Oota and Y. Yasui, Kerr-NUT-de Sitter curvature in all dimensions, J. Phys. A 40 (2007) F177 [hep-th/0611285] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    L. Mason and A. Taghavi-Chabert, Killing-Yano tensors and multi-Hermitian structures, J. Geom. Phys. 60 (2010) 907 [arXiv:0805.3756] [SPIRES].MATHCrossRefADSGoogle Scholar
  15. [15]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Gravitational perturbations of higher dimensional rotating black holes: tensor perturbations, Phys. Rev. D 74 (2006) 084021 [hep-th/0606076] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    K. Murata and J. Soda, A note on separability of field equations in Myers-Perry spacetimes, Class. Quant. Grav. 25 (2008) 035006 [arXiv:0710.0221] [SPIRES].CrossRefMathSciNetGoogle Scholar
  17. [17]
    T. Oota and Y. Yasui, Separability of gravitational perturbation in generalized Kerr-NUT-de Sitter spacetime, Int. J. Mod. Phys. A 25 (2010) 3055 [arXiv:0812.1623] [SPIRES].ADSGoogle Scholar
  18. [18]
    T. Houri, T. Oota and Y. Yasui, Closed conformal Killing-Yano tensor and Kerr-NUT-de Sitter spacetime uniqueness, Phys. Lett. B 656 (2007) 214 [arXiv:0708.1368] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    P. Krtouš, V.P. Frolov and D. Kubizňák, Hidden symmetries of higher dimensional black holes and uniqueness of the Kerr-NUT-(A)dS spacetime, Phys. Rev. D 78 (2008) 064022 [arXiv:0804.4705] [SPIRES].ADSGoogle Scholar
  20. [20]
    T. Houri, T. Oota and Y. Yasui, Closed conformal Killing-Yano tensor and uniqueness of generalized Kerr-NUT-de Sitter spacetime, Class. Quant. Grav. 26 (2009) 045015 [arXiv:0805.3877] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, Princeton U.S.A. (1953).MATHGoogle Scholar
  22. [22]
    S.-Q. Wu, Separability of a modified Dirac equation in a five-dimensional rotating, charged black hole in string theory, Phys. Rev. D 80 (2009) 044037 [Erratum ibid. D 80 (2009) 069902] [arXiv:0902.2823] [SPIRES].ADSGoogle Scholar
  23. [23]
    D. Kubiznak, H.K. Kunduri and Y. Yasui, Generalized Killing-Yano equations in D = 5 gauged supergravity, Phys. Lett. B 678 (2009) 240 [arXiv:0905.0722] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    S.-Q. Wu, Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general non-extremal rotating charged black holes in minimal five-dimensional gauged supergravity, Phys. Rev. D 80 (2009) 084009 [arXiv:0906.2049] [SPIRES].ADSGoogle Scholar
  25. [25]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    D. Kubiznak, Black hole spacetimes with Killing-Yano symmetries, arXiv:0909.1589 [SPIRES].
  27. [27]
    P. Davis, H.K. Kunduri and J. Lucietti, Special symmetries of the charged Kerr-AdS black hole of D = 5 minimal gauged supergravity, Phys. Lett. B 628 (2005) 275 [hep-th/0508169] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    H. Ahmedov and A.N. Aliev, Uniqueness of rotating charged black holes in five-dimensional minimal gauged supergravity, Phys. Lett. B 679 (2009) 396 [arXiv:0907.1804] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    T. Houri, D. Kubiznak, C. Warnick and Y. Yasui, Symmetries of the Dirac operator with skew-symmetric torsion, arXiv:1002.3616 [SPIRES].
  30. [30]
    A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    I. Agricola, The Srni lectures on non-integrable geometries with torsion, math.DG/0606705 [SPIRES].
  32. [32]
    A. Sen, Rotating charged black hole solution in heterotic string theory, Phys. Rev. Lett. 69 (1992) 1006 [hep-th/9204046] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  33. [33]
    M. Cvetič and D. Youm, Near-BPS-saturated rotating electrically charged black holes as string states, Nucl. Phys. B 477 (1996) 449 [hep-th/9605051] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    D.D.K. Chow, Symmetries of supergravity black holes, arXiv:0811.1264 [SPIRES].
  35. [35]
    I.M. Benn and P. Charlton, Dirac symmetry operators from conformal Killing-Yano tensors, Class. Quant. Grav. 14 (1997) 1037 [gr-qc/9612011] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  36. [36]
    M. Walker and R. Penrose, On quadratic first integrals of the geodesic equations for type {22} spacetimes, Commun. Math. Phys. 18 (1970) 265 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  37. [37]
    P. Stackel, Sur l’integration de l’équation differentielle de Hamilton, Comptes Rendus Acad. Sci. Paris Ser. IV 121 (1895) 489.Google Scholar
  38. [38]
    C.D. Collinson, On the relationship between Killing tensors and Killing-Yano tensors, Int. J. Theor. Phys. 15 (1976) 311.MATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    J.J. Ferrando and J.A. Saez, A type-Rainich approach to the Killing-Yano tensors, gr-qc/0212085 [SPIRES].
  40. [40]
    B. Carter, Killing tensor quantum numbers and conserved currents in curved space, Phys. Rev. D 16 (1977) 3395 [SPIRES].ADSGoogle Scholar
  41. [41]
    B. Carter and R.G. Mclenaghan, Generalized total angular momentum operator for the Dirac equation in curved space-time, Phys. Rev. D 19 (1979) 1093 [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    G.W. Gibbons, R.H. Rietdijk and J.W. van Holten, SUSY in the sky, Nucl. Phys. B 404 (1993) 42 [hep-th/9303112] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    M. Cariglia, New quantum numbers for the Dirac equation in curved spacetime, Class. Quant. Grav. 21 (2004) 1051 [hep-th/0305153] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  44. [44]
    M. Tanimoto, The role of Killing-Yano tensors in supersymmetric mechanics on a curved manifold, Nucl. Phys. B 442 (1995) 549 [gr-qc/9501006] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    R.H. Rietdijk and J.W. van Holten, Killing tensors and a new geometric duality, Nucl. Phys. B 472 (1996) 427 [hep-th/9511166] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    F. De Jonghe, K. Peeters and K. Sfetsos, Killing-Yano supersymmetry in string theory, Class. Quant. Grav. 14 (1997) 35 [hep-th/9607203] [SPIRES].MATHCrossRefADSGoogle Scholar
  47. [47]
    I. Benmachiche, J. Louis and D. Martínez-Pedrera, The effective action of the heterotic string compactified on manifolds with SU(3) structure, Class. Quant. Grav. 25 (2008) 135006 [arXiv:0802.0410] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    T. Houri, T. Oota and Y. Yasui, Generalized Kerr-NUT-de Sitter metrics in all dimensions, Phys. Lett. B 666 (2008) 391 [arXiv:0805.0838] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    V.P. Frolov and D. Kubizňák, Higher-dimensional black holes: hidden symmetries and separation of variables, Class. Quant. Grav. 25 (2008) 154005 [arXiv:0802.0322] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    S.F. Hassan and A. Sen, Twisting classical solutions in heterotic string theory, Nucl. Phys. B 375 (1992) 103 [hep-th/9109038] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963) 237 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  52. [52]
    A. Burinskii, Some properties of the Kerr solution to low-energy string theory, Phys. Rev. D 52 (1995) 5826 [hep-th/9504139] [SPIRES].MathSciNetADSGoogle Scholar
  53. [53]
    T. Okai, Global structure and thermodynamic property of the four-dimensional twisted Kerr solution, Prog. Theor. Phys. 92 (1994) 47 [hep-th/9402149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    P.A. Blaga and C. Blaga, Bounded radial geodesics around a Kerr-Sen black hole, Class. Quant. Grav. 18 (2001) 3893 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  55. [55]
    S.Q. Wu and X. Cai, Massive complex scalar field in the Kerr-Sen geometry: exact solution of wave equation and Hawking radiation, J. Math. Phys. 44 (2003) 1084 [gr-qc/0303075] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  56. [56]
    K. Hioki and U. Miyamoto, Hidden symmetries, null geodesics and photon capture in the Sen black hole, Phys. Rev. D 78 (2008) 044007 [arXiv:0805.3146] [SPIRES].MathSciNetADSGoogle Scholar
  57. [57]
    R. Floyd, The dynamics of Kerr fields, Ph.D. thesis, London University, London U.K. (1973).Google Scholar
  58. [58]
    R. Penrose, Naked singularities, Annals N.Y. Acad. Sci. 224 (1973) 125 [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    B. Carter, A new family of Einstein spaces, Phys. Lett. A 26 (1968) 399.ADSGoogle Scholar
  60. [60]
    J.F. Plebański, A class of solutions of Einstein-Maxwell equations, Annals Phys. 90 (1975) 196.MATHCrossRefADSGoogle Scholar
  61. [61]
    V.P. Frolov, V. Skarzhinsky, A. Zelnikov and O. Heinrich, Equilibrium configurations of a cosmic string near a rotating black hole, Phys. Lett. B 224 (1989) 255 [SPIRES].MathSciNetADSGoogle Scholar
  62. [62]
    Z.W. Chong, M. Cvetic, H. Lu and C.N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  63. [63]
    Z.W. Chong, M. Cvetic, H. Lu and C.N. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [SPIRES].MathSciNetADSGoogle Scholar
  64. [64]
    D.D.K. Chow, Charged rotating black holes in six-dimensional gauged supergravity, Class. Quant. Grav. 27 (2010) 065004 [arXiv:0808.2728] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    D.D.K. Chow, Equal charge black holes and seven dimensional gauged supergravity, Class. Quant. Grav. 25 (2008) 175010 [arXiv:0711.1975] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    E.G. Kalnins and W. Miller Jr., Killing-Yano tensors and variable separation in Kerr geometry, J. Math. Phys. 30 (1989) 2630.Google Scholar
  67. [67]
    E.G. Kalnins, G.C. Williams and W. Miller, Intrinsic characterization of the separation constant for spin one and gravitational perturbations in Kerr geometry, Proc. Roy. Soc. Lond. A 452 (1996) 997.MathSciNetADSGoogle Scholar
  68. [68]
    I.M. Benn, P. Charlton and J.M. Kress, Debye potentials for Maxwell and Dirac fields from a generalisation of the Killing-Yano equation, J. Math. Phys. 38 (1997) 4504 [gr-qc/9610037] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Tsuyoshi Houri
    • 1
  • David Kubizňák
    • 2
  • Claude M. Warnick
    • 2
    • 3
  • Yukinori Yasui
    • 4
  1. 1.Osaka City University Advanced Mathematical InstituteOsakaJapan
  2. 2.DAMTP, University of CambridgeCambridgeU.K.
  3. 3.Queens’ CollegeCambridgeU.K.
  4. 4.Department of Mathematics and Physics, Graduate School of ScienceOsaka City UniversityOsakaJapan

Personalised recommendations