Skip to main content
Log in

Spacetime noncommutativity in models with warped extradimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct consistent noncommutative (NC) deformations of the Randall-Sundrum spacetime that solve the NC Einstein equations with a non-trivial Poisson tensor depending on the fifth coordinate. In a class of these deformations where the Poisson tensor is exponentially localized on one of the branes (the NC-brane), we study the effects on bulk particles in terms of Lorentz-violating operators induced by NC-brane interactions. We sketch two models in which massive bulk particles mediate NC effects to an almost-commutative SM-brane, such that observables at high energy colliders are enhanced with respect to low energy and astrophysical observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Hewett, F.J. Petriello and T.G. Rizzo, Signals for non-commutative interactions at linear colliders, Phys. Rev. D 64 (2001) 075012 [hep-ph/0010354] [SPIRES].

    ADS  Google Scholar 

  2. I. Hinchliffe, N. Kersting and Y.L. Ma, Review of the phenomenology of noncommutative geometry, Int. J. Mod. Phys. A 19 (2004) 179 [hep-ph/0205040] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. B. Jurčo, L. Möller, S. Schraml, P. Schupp and J. Wess, Construction of non-Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C 21 (2001) 383 [hep-th/0104153] [SPIRES].

    ADS  Google Scholar 

  4. X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, The standard model on non-commutative space-time, Eur. Phys. J. C 23 (2002) 363 [hep-ph/0111115] [SPIRES].

    ADS  Google Scholar 

  5. B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp and M. Wohlgenannt, The standard model on non-commutative space-time: Electroweak currents and Higgs sector, Eur. Phys. J. C 42 (2005) 483 [hep-ph/0502249] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp and M. Wohlgenannt, The standard model on non-commutative space-time: Strong interactions included, Eur. Phys. J. C 42 (2005) 499 [hep-ph/0503064] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Ohl and J. Reuter, Testing the noncommutative standard model at a future photon collider, Phys. Rev. D 70 (2004) 076007 [hep-ph/0406098] [SPIRES].

    ADS  Google Scholar 

  8. A. Alboteanu, T. Ohl and R. Rückl, Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74 (2006) 096004 [hep-ph/0608155] [SPIRES].

    ADS  Google Scholar 

  9. A. Alboteanu, T. Ohl and R. Rückl, The Noncommutative Standard Model at O(θ 2), Phys. Rev. D 76 (2007) 105018 [arXiv:0707.3595] [SPIRES].

    ADS  Google Scholar 

  10. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990) 331 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. C. Jambor and A. Sykora, Realization of algebras with the help of *-products, hep-th/0405268 [SPIRES].

  13. P. Schupp and S. Solodukhin, Exact Black Hole Solutions in Noncommutative Gravity, arXiv:0906.2724 [SPIRES].

  14. T. Ohl and A. Schenkel, Cosmological and Black Hole Spacetimes in Twisted Noncommutative Gravity, JHEP 10 (2009) 052 [arXiv:0906.2730] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. P. Aschieri and L. Castellani, Noncommutative Gravity Solutions, J. Geom. Phys. 60 (2010) 375 [arXiv:0906.2774] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. P. Aschieri et al., A gravity theory on noncommutative spaces, Class. Quant. Grav. 22 (2005) 3511 [hep-th/0504183] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. P. Aschieri, M. Dimitrijević, F. Meyer and J. Wess, Noncommutative geometry and gravity, Class. Quant. Grav. 23 (2006) 1883 [hep-th/0510059] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  18. T. Asakawa and S. Kobayashi, Noncommutative Solitons of Gravity, Class. Quant. Grav. 27 (2010) 105014 [arXiv:0911.2136] [SPIRES].

    Article  ADS  Google Scholar 

  19. A. Stern, Emergent Abelian Gauge Fields from Noncommutative Gravity, arXiv:0912.3021 [SPIRES].

  20. M.R. Douglas and C.M. Hull, D-branes and the noncommutative torus, JHEP 02 (1998) 008 [hep-th/9711165] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. V. Schomerus, D-branes and deformation quantization, JHEP 06 (1999) 030 [hep-th/9903205] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 Supergravity in Five-Dimensions, Phys. Lett. B 154 (1985) 268 [SPIRES].

    ADS  Google Scholar 

  24. M. Günaydin, L.J. Romans and N.P. Warner, Compact and Noncompact Gauged Supergravity Theories in Five-Dimensions, Nucl. Phys. B 272 (1986) 598 [SPIRES].

    Article  ADS  Google Scholar 

  25. L.J. Romans, Gauged N = 4 supergravities in five-dimensions and their magnetovac backgrounds, Nucl. Phys. B 267 (1986) 433 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. H. Lü, C.N. Pope and T.A. Tran, Five-dimensional N = 4, SU(2) × U(1) gauged supergravity from type IIB, Phys. Lett. B 475 (2000) 261 [hep-th/9909203] [SPIRES].

    ADS  Google Scholar 

  27. O. Aharony, J. Gomis and T. Mehen, On theories with light-like noncommutativity, JHEP 09 (2000) 023 [hep-th/0006236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. L. Alvarez-Gaumé, F. Meyer and M.A. Vazquez-Mozo, Comments on noncommutative gravity, Nucl. Phys. B 753 (2006) 92 [hep-th/0605113] [SPIRES].

    Article  ADS  Google Scholar 

  29. E.E. Boos, I.P. Volobuev, Y.A. Kubyshin and M.N. Smolyakov, Effective Lagrangians of the Randall-Sundrum model, Theor. Math. Phys. 131 (2002) 629 [SPIRES].

    Article  MATH  Google Scholar 

  30. E.E. Boos, Y.A. Kubyshin, M.N. Smolyakov and I.P. Volobuev, Effective Lagrangians for physical degrees of freedom in the Randall-Sundrum model, Class. Quant. Grav. 19 (2002) 4591 [hep-th/0202009] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Experimental probes of localized gravity: On and off the wall, Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041] [SPIRES].

    ADS  Google Scholar 

  32. V.A. Kostelecky and M. Mewes, Signals for Lorentz violation in electrodynamics, Phys. Rev. D 66 (2002) 056005 [hep-ph/0205211] [SPIRES].

    ADS  Google Scholar 

  33. V.A. Kostelecky and N. Russell, Data Tables for Lorentz and CPT Violation, arXiv:0801.0287 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph F. Uhlemann.

Additional information

ArXiv ePrint: 1002.2884

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohl, T., Schenkel, A. & Uhlemann, C.F. Spacetime noncommutativity in models with warped extradimensions. J. High Energ. Phys. 2010, 29 (2010). https://doi.org/10.1007/JHEP07(2010)029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)029

Keywords

Navigation