Mixing in the axial sector in bottom-up holography for walking technicolour

  • Dennis D. Dietrich
  • Matti Järvinen
  • Chris Kouvaris


In [1, 2], we constructed a holographic description of walking technicolour theories using both a hard-and a soft-wall model. Here we allow for mixing between the Goldstone bosons and the longitudinal components of the axial vector mesons. We show how this mixing affects our previous results and we make predictions about how this description of technicolour can be tested.


Gauge-gravity correspondence Beyond Standard Model Technicolor and Composite Models 


  1. [1]
    D.D. Dietrich and C. Kouvaris, Constraining vectors and axial-vectors in walking technicolour by a holographic principle, Phys. Rev. D 78 (2008) 055005 [arXiv:0805.1503] [SPIRES].ADSGoogle Scholar
  2. [2]
    D.D. Dietrich and C. Kouvaris, Generalised bottom-up holography and walking technicolour, Phys. Rev. D 79 (2009) 075004 [arXiv:0809.1324] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    S. Weinberg, Implications of Dynamical Symmetry Breaking: An Addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].ADSGoogle Scholar
  4. [4]
    L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619 [SPIRES]. ADSGoogle Scholar
  5. [5]
    F. Sannino and K. Tuominen, Techniorientifold, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [SPIRES].ADSGoogle Scholar
  6. [6]
    D.K. Hong, S.D.H. Hsu and F. Sannino, Composite Higgs from higher representations, Phys. Lett. B 597 (2004) 89 [hep-ph/0406200] [SPIRES].ADSGoogle Scholar
  7. [7]
    D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [SPIRES].ADSGoogle Scholar
  8. [8]
    D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs and precision electroweak measurements on the Z resonance: An update, Phys. Rev. D 73 (2006) 037701 [hep-ph/0510217] [SPIRES].ADSGoogle Scholar
  9. [9]
    D.D. Dietrich and M. Järvinen, Pion masses in quasiconformal gauge field theories, Phys. Rev. D 79 (2009) 057903 [arXiv:0901.3528] [SPIRES].ADSGoogle Scholar
  10. [10]
    D.D. Dietrich and F. Sannino, Walking in the SU(N), Phys. Rev. D 75 (2007) 085018 [hep-ph/0611341] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    J.M. Cline, M. Järvinen and F. Sannino, The Electroweak Phase Transition in Nearly Conformal Technicolor, Phys. Rev. D 78 (2008) 075027 [arXiv:0808.1512] [SPIRES].ADSGoogle Scholar
  12. [12]
    M. Järvinen, T.A. Ryttov and F. Sannino, Extra Electroweak Phase Transitions from Strong Dynamics, Phys. Lett. B 680 (2009) 251 [arXiv:0901.0496] [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Järvinen, T.A. Ryttov and F. Sannino, The Electroweak Phase Transition in Ultra Minimal Technicolor, Phys. Rev. D 79 (2009) 095008 [arXiv:0903.3115] [SPIRES].ADSGoogle Scholar
  14. [14]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Dark Matter from new Technicolor Theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [SPIRES].ADSGoogle Scholar
  15. [15]
    C. Kouvaris, Dark Majorana Particles from the Minimal Walking Technicolor, Phys. Rev. D 76 (2007) 015011 [hep-ph/0703266] [SPIRES].ADSGoogle Scholar
  16. [16]
    C. Kouvaris, WIMP Annihilation and Cooling of Neutron Stars, Phys. Rev. D 77 (2008) 023006 [arXiv:0708.2362] [SPIRES].ADSGoogle Scholar
  17. [17]
    C. Kouvaris, The Dark Side of Strong Coupled Theories, Phys. Rev. D 78 (2008) 075024 [arXiv:0807.3124] [SPIRES].ADSGoogle Scholar
  18. [18]
    M.Y. Khlopov and C. Kouvaris, Strong Interactive Massive Particles from a Strong Coupled Theory, Phys. Rev. D 77 (2008) 065002 [arXiv:0710.2189] [SPIRES].ADSGoogle Scholar
  19. [19]
    M.Y. Khlopov and C. Kouvaris, Composite dark matter from a model with composite Higgs boson, Phys. Rev. D 78 (2008) 065040 [arXiv:0806.1191] [SPIRES].ADSGoogle Scholar
  20. [20]
    K. Belotsky, M. Khlopov and C. Kouvaris, Muon flux limits for Majorana dark matter from strong coupling theories, Phys. Rev. D 79 (2009) 083520 [arXiv:0810.2022] [SPIRES].ADSGoogle Scholar
  21. [21]
    T.A. Ryttov and F. Sannino, Ultra Minimal Technicolor and its Dark Matter TIMP, Phys. Rev. D 78 (2008) 115010 [arXiv:0809.0713] [SPIRES].ADSGoogle Scholar
  22. [22]
    R. Foadi, M.T. Frandsen and F. Sannino, Technicolor Dark Matter, Phys. Rev. D 80 (2009) 037702 [arXiv:0812.3406] [SPIRES].ADSGoogle Scholar
  23. [23]
    E. Nardi, F. Sannino and A. Strumia, Decaying Dark Matter can explain the electron/positron excesses, JCAP 01 (2009) 043 [arXiv:0811.4153] [SPIRES].ADSGoogle Scholar
  24. [24]
    T.A. Ryttov and F. Sannino, Conformal Windows of SU(N) Gauge Theories, Higher Dimensional Representations and The Size of The Unparticle World, Phys. Rev. D 76 (2007) 105004 [arXiv:0707.3166] [SPIRES].ADSGoogle Scholar
  25. [25]
    T.A. Ryttov and F. Sannino, Supersymmetry Inspired QCD β-function, Phys. Rev. D 78 (2008) 065001 [arXiv:0711.3745] [SPIRES].ADSGoogle Scholar
  26. [26]
    T.A. Ryttov and F. Sannino, Conformal House, arXiv:0906.0307 [SPIRES].
  27. [27]
    F. Sannino, Conformal Windows of SP(2N) and SO(N) Gauge Theories, Phys. Rev. D 79 (2009) 096007 [arXiv:0902.3494] [SPIRES].ADSGoogle Scholar
  28. [28]
    A. Armoni, The Conformal Window from the Worldline Formalism, Nucl. Phys. B 826 (2010) 328 [arXiv:0907.4091] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    A. Armoni, Beyond The Quenched (or Probe Brane) Approximation in Latti ce (or Holographic) QCD, Phys. Rev. D 78 (2008) 065017 [arXiv:0805.1339] [SPIRES].ADSGoogle Scholar
  30. [30]
    E. Poppitz and M. Unsal, Conformality or confinement: (IR)relevance of topological excitations, JHEP 09 (2009) 050 [arXiv:0906.5156] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    D.D. Dietrich, A mass-dependent β-function, Phys. Rev. D 80 (2009) 065032 [arXiv:0908.1364] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504 [arXiv:0705.1664] [SPIRES].ADSGoogle Scholar
  33. [33]
    S. Catterall, J. Giedt, F. Sannino and J. Schneible, Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks, JHEP 11 (2008) 009 [arXiv:0807.0792] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    L. Del Debbio, M.T. Frandsen, H. Panagopoulos and F. Sannino, Higher representations on the lattice: perturbative studies, JHEP 06 (2008) 007 [arXiv:0802.0891] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions, arXiv:0805.2058 [SPIRES].
  36. [36]
    Y. Shamir, B. Svetitsky and T. DeGrand, Zero of the discrete β-function in SU(3) lattice gauge theory with color sextet fermions, Phys. Rev. D 78 (2008) 031502 [arXiv:0803.1707] [SPIRES]. ADSGoogle Scholar
  37. [37]
    L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Conformal vs confining scenario in SU(2) with adjoint fermions, Phys. Rev. D 80 (2009) 074507 [arXiv:0907.3896] [SPIRES]. ADSGoogle Scholar
  38. [38]
    Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Nearly conformal gauge theories in finite volume, Phys. Lett. B 681 (2009) 353 [arXiv:0907.4562] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: Effective theories and dark matter, Phys. Rev. D 73 (2006) 115003 [hep-ph/0603014] [SPIRES].ADSGoogle Scholar
  40. [40]
    A. Belyaev et al., Technicolor Walks at the LHC, Phys. Rev. D 79 (2009) 035006 [arXiv:0809.0793] [SPIRES].ADSGoogle Scholar
  41. [41]
    R. Foadi, M.T. Frandsen, T.A. Ryttov and F. Sannino, Minimal Walking Technicolor: Set Up for Collider Physics, Phys. Rev. D 76 (2007) 055005 [arXiv:0706.1696] [SPIRES].ADSGoogle Scholar
  42. [42]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a Holographic Model of Hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear Confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [SPIRES].ADSGoogle Scholar
  44. [44]
    L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [SPIRES].ADSGoogle Scholar
  45. [45]
    L. Da Rold and A. Pomarol, The scalar and pseudoscalar sector in a five-dimensional approach to chiral symmetry breaking, JHEP 01 (2006) 157 [hep-ph/0510268] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    J. Hirn, N. Rius and V. Sanz, Geometric approach to condensates in holographic QCD, Phys. Rev. D 73 (2006) 085005 [hep-ph/0512240] [SPIRES].ADSGoogle Scholar
  47. [47]
    S.J. Brodsky and G.F. de Teramond, Light-Front Holography and AdS/QCD Correspondence, arXiv:0804.3562 [SPIRES].
  48. [48]
    S.J. Brodsky and G.F. de Teramond, Light-Front Dynamics and AdS/QCD Correspondence: Gravitational Form Factors of Composite Hadrons, Phys. Rev. D 78 (2008) 025032 [arXiv:0804.0452] [SPIRES]. ADSGoogle Scholar
  49. [49]
    S.J. Brodsky and G.F. de Teramond, AdS/CFT and Light-Front QCD , arXiv:0802.0514 [SPIRES].
  50. [50]
    S.J. Brodsky and G.F. de Teramond, Light-Front Dynamics and AdS/QCD Correspondence: The Pion Form Factor in the Space-and Time-Like Regions, Phys. Rev. D 77 (2008) 056007 [arXiv:0707.3859] [SPIRES].ADSGoogle Scholar
  51. [51]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES]. zbMATHMathSciNetADSGoogle Scholar
  52. [52]
    B. Holdom, Raising the Sideways Scale, Phys. Rev. D 24 (1981) 1441 [SPIRES].ADSGoogle Scholar
  53. [53]
    K. Yamawaki, M. Bando and K.-i. Matumoto, Scale Invariant Technicolor Model and a Technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [SPIRES]. CrossRefADSGoogle Scholar
  54. [54]
    T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES]. CrossRefADSGoogle Scholar
  55. [55]
    V.A. Miransky and K. Yamawaki, Conformal phase transition in gauge theories, Phys. Rev. D 55 (1997) 5051 [Erratum ibid. D 56 (1997) 3768] [hep-th/9611142] [SPIRES].ADSGoogle Scholar
  56. [56]
    V.A. Miransky, T. Nonoyama and K. Yamawaki, On the phase diagram of asymptotically free gauge theories with additional four fermion interaction, Mod. Phys. Lett. A4 (1989) 1409 [SPIRES]. ADSGoogle Scholar
  57. [57]
    K.D. Lane and E. Eichten, Two Scale Technicolor, Phys. Lett. B 222 (1989) 274 [SPIRES]. ADSGoogle Scholar
  58. [58]
    E. Eichten and K.D. Lane, Dynamical Breaking of Weak Interaction Symmetries, Phys. Lett. B 90 (1980) 125 [SPIRES]. ADSGoogle Scholar
  59. [59]
    D.K. Hong and H.-U. Yee, Holographic estimate of oblique corrections for technicolor, Phys. Rev. D 74 (2006) 015011 [hep-ph/0602177] [SPIRES].ADSGoogle Scholar
  60. [60]
    J. Hirn and V. Sanz, A negative S parameter from holographic technicolor, Phys. Rev. Lett. 97 (2006) 121803 [hep-ph/0606086] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    C.D. Carone, J. Erlich and J.A. Tan, Holographic Bosonic Technicolor, Phys. Rev. D 75 (2007) 075005 [hep-ph/0612242] [SPIRES].ADSGoogle Scholar
  62. [62]
    C.D. Carone, J. Erlich and M. Sher, Holographic Electroweak Symmetry Breaking from D-branes, Phys. Rev. D 76 (2007) 015015 [arXiv:0704.3084] [SPIRES].ADSGoogle Scholar
  63. [63]
    T. Hirayama and K. Yoshioka, Holographic Construction of Technicolor Theory, JHEP 10 (2007) 002 [arXiv:0705.3533] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    J. Hirn, A. Martin and V. Sanz, Describing viable technicolor scenarios, Phys. Rev. D 78 (2008) 075026 [arXiv:0807.2465] [SPIRES].ADSGoogle Scholar
  65. [65]
    M. Fabbrichesi, M. Piai and L. Vecchi, Dynamical electro-weak symmetry breaking from deformed AdS: vector mesons and effective couplings, Phys. Rev. D 78 (2008) 045009 [arXiv:0804.0124] [SPIRES].ADSGoogle Scholar
  66. [66]
    C. Núñez, I. Papadimitriou and M. Piai, Walking Dynamics from String Duals, Int. J. Mod. Phys. A 25 (2010) 2837 [arXiv:0812.3655] [SPIRES].ADSGoogle Scholar
  67. [67]
    J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [SPIRES].
  68. [68]
    D.D. Dietrich, Gauge invariance in gravity-like descriptions of massive gauge field theories, arXiv:0704.1828 [SPIRES].
  69. [69]
    D.D. Dietrich, Electroweak symmetry breaking in other terms, Eur. Phys. J. C 67 (2010) 237 [arXiv:0804.0904] [SPIRES].ADSGoogle Scholar
  70. [70]
    T. Appelquist, P.S. Rodrigues da Silva and F. Sannino, Enhanced global symmetries and the chiral phase transition, Phys. Rev. D 60 (1999) 116007 [hep-ph/9906555] [SPIRES].ADSGoogle Scholar
  71. [71]
    R. Foadi, M. Järvinen and F. Sannino, Unitarity in Technicolor, Phys. Rev. D 79 (2009) 035010 [arXiv:0811.3719] [SPIRES].ADSGoogle Scholar
  72. [72]
    T. Appelquist and F. Sannino, The Physical Spectrum of Conformal SU(N) Gauge Theories, Phys. Rev. D 59 (1999) 067702 [hep-ph/9806409] [SPIRES].ADSGoogle Scholar
  73. [73]
    F. Sannino, Mass Deformed Exact S-parameter in Conformal Theories, arXiv:1006.0207 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Dennis D. Dietrich
    • 1
  • Matti Järvinen
    • 1
  • Chris Kouvaris
    • 2
    • 3
  1. 1.CP3-OriginsUniversity of Southern DenmarkOdense MDenmark
  2. 2.The Niels Bohr InstituteCopenhagen ØDenmark
  3. 3.Service de Physique Théorique, CP225Université Libre de Bruxelles, Boulevard du Triomphe (Campus de la Plaine)Bruxel lesBelgium

Personalised recommendations