Advertisement

Simultaneous extraction of the Fermi constant and PMNS matrix elements in the presence of a fourth generation

  • CKMfitter Group
  • H. Lacker
  • A. Menzel
Article

Abstract

Several recent studies performed on constraints of a fourth generation of quarks and leptons suffer from the ad-hoc assumption that 3 × 3 unitarity holds for the first three generations in the neutrino sector. Only under this assumption is one able to determine the Fermi constant G F from the muon lifetime measurement with the claimed precision of G F = 1.16637(1) × 10−5 GeV−2. We study how well G F can be extracted within the framework of four generations from leptonic and radiative μ and τ decays, as well as from K ℓ3 decays and leptonic decays of charged pions, and we discuss the role of lepton universality tests in this context. In the combined fit to leptonic and radiative μ and τ decays, K ℓ3 decays and leptonic decays of charged pions we find a p-value of 2.6 % for the fourth generation matrix element |U e4| = 0 of the neutrino mixing matrix. We emphasize that constraints on a fourth generation from quark and lepton flavour observables and from electroweak precision observables can only be obtained in a consistent way if these three sectors are considered simultaneously.

Keywords

Rare Decays Beyond Standard Model Neutrino Physics Kaon Physics 

References

  1. [1]
    A. Arhrib and W.S. Hou, Effect of fourth generation CP phase on bs transitions, Eur. Phys. J. C 27 (2003) 555 [hep-ph/0211267] [SPIRES].ADSGoogle Scholar
  2. [2]
    W.S. Hou, M. Nagashima and A. Soddu, Large Time-dependent CP Violation in B 0 s System and Finite \( {D^0} - {\bar{D}^0} \) Mass Difference in Four Generation Standard Model, Phys. Rev. D 76 (2007) 016004 [hep-ph/0610385] [SPIRES].ADSGoogle Scholar
  3. [3]
    W.-S. Hou, M. Nagashima and A. Soddu, Enhanced \( K(L) \to {\pi^0}\nu \overline \nu \) from direct CP-violation in BKπ with four generations, Phys. Rev. D 72 (2005) 115007 [hep-ph/0508237] [SPIRES].ADSGoogle Scholar
  4. [4]
    W.-S. Hou, H.-n. Li, S. Mishima and M. Nagashima, Fourth generation CP-violation effect on BKπ, φK and ρK in NLO PQCD, Phys. Rev. Lett. 98 (2007) 131801 [hep-ph/0611107] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    A. Soni, A.K. Alok, A. Giri, R. Mohanta and S. Nandi, The Fourth family: A Natural explanation for the observed pattern of anomalies in B CP asymmetries, Phys. Lett. B 683 (2010) 302 [arXiv:0807.1971] [SPIRES].ADSGoogle Scholar
  6. [6]
    F.J. Botella, G.C. Branco and M. Nebot, Small violations of 3 × 3 unitarity, the phase in B0(S) - anti-B0(S) mixing and visible tcZ decays at the LHC, J. Phys. Conf. Ser. 171 (2009) 012058.CrossRefADSGoogle Scholar
  7. [7]
    M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, How much space is left for a new family of fermions?, Phys. Rev. D 79 (2009) 113006 [arXiv:0902.4883] [SPIRES].ADSGoogle Scholar
  8. [8]
    A. Soni, A.K. Alok, A. Giri, R. Mohanta and S. Nandi, SM with four generations: Selected implications for rare B and K decays, 1002.0595 [SPIRES].
  9. [9]
    A.J. Buras et al., Patterns of Flavour Violation in the Presence of a Fourth Generation of Quarks and Leptons, 1002.2126 [SPIRES].
  10. [10]
    H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [SPIRES].ADSGoogle Scholar
  11. [11]
    G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].ADSGoogle Scholar
  12. [12]
    V.A. Novikov, L.B. Okun, A.N. Rozanov and M.I. Vysotsky, Mass of the Higgs versus fourth generation masses, JETP Lett. 76 (2002) 127 [hep-ph/0203132] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    M.I. Vysotsky, Fourth quark-lepton generation and precision measurements, arXiv:0910.3100 [SPIRES].
  14. [14]
    M.S. Chanowitz, Bounding CKM Mixing with a Fourth Family, Phys. Rev. D 79 (2009) 113008 [arXiv:0904.3570] [SPIRES].ADSGoogle Scholar
  15. [15]
    N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys.Rev. Lett. 10 (1963) 531 [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    W.-S. Hou, F.-F. Lee and C.-Y. Ma, Fourth Generation Leptons and Muon g - 2, Phys. Rev. D 79 (2009) 073002 [arXiv:0812.0064] [SPIRES].ADSGoogle Scholar
  18. [18]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].zbMATHCrossRefADSGoogle Scholar
  19. [19]
    B. Pontecorvo, Neutrino experiments and the question of leptonic-charge conservation, Zh. Eksp. Teor. Fiz. 53 (1967) 1717 [Sov. Phys. JETP 26 (1968) 984] [SPIRES].Google Scholar
  20. [20]
    ALEPH collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].ADSGoogle Scholar
  21. [21]
    The CKMfitter Group, J. Charles et al., CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [SPIRES], updated at http://ckmfitter.in2p3.fr/.CrossRefADSGoogle Scholar
  22. [22]
    The CKMfitter Group, A. Höcker et al., A New Approach to a Global Fit of the CKM Matrix, Eur. Phys. J. C 21 (2001) 225 [hep-ph/0104062] [SPIRES].CrossRefGoogle Scholar
  23. [23]
    B.W. Lee and R.E. Shrock, Natural Suppression of Symmetry Violation in Gauge Theories: Muon - Lepton and Electron Lepton Number Nonconservation, Phys. Rev. D 16 (1977) 1444 [SPIRES].ADSGoogle Scholar
  24. [24]
    R.E. Shrock and L.L. Wang, New, Generalized Cabibbo Fit and Application to Quark Mixing Angles in the Sequential Weinberg-Salam Model, Phys. Rev. Lett. 41 (1978) 1692.CrossRefADSGoogle Scholar
  25. [25]
    R.E. Shrock, S.B. Treiman and L.-L. Wang, Bounds on Quark Mixing Angles in the Standard Six Quark Model, Phys. Rev. Lett. 42 (1979) 1589 [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    R.E. Shrock, General Theory of Weak Leptonic and Semileptonic Decays. 1. Leptonic Pseudoscalar Meson Decays, with Associated Tests For and Bounds on, Neutrino Masses and Lepton Mixing, Phys. Rev. D 24 (1981) 1232 [SPIRES].ADSGoogle Scholar
  27. [27]
    R.E. Shrock, General Theory of Weak Processes Involving Neutrinos. 2. Pure Leptonic Decays, Phys. Rev. D 24 (1981) 1275 [SPIRES].ADSGoogle Scholar
  28. [28]
    T. Appelquist, M. Piai and R. Shrock, Fermion masses and mixing in extended technicolor models, Phys. Rev. D 69 (2004) 015002 [hep-ph/0308061] [SPIRES].ADSGoogle Scholar
  29. [29]
    P. Langacker and D. London, Lepton Number Violation and Massless Nonorthogonal Neutrinos, Phys. Rev. D 38 (1988) 907 [SPIRES].ADSGoogle Scholar
  30. [30]
    D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog, Non-decoupling of Heavy Neutrinos and Lepton Flavour Violation, Nucl. Phys. B 444 (1995) 451 [hep-ph/9503228] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the Leptonic Mixing Matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    E. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon and O. Yasuda, CP-violation from non-unitary leptonic mixing, Phys. Lett. B 649 (2007) 427 [hep-ph/0703098] [SPIRES].ADSGoogle Scholar
  34. [34]
    S. Antusch, M. Blennow, E. Fernandez-Martinez and J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a Neutrino Factory, Phys. Rev. D 80 (2009) 033002 [arXiv:0903.3986] [SPIRES].ADSGoogle Scholar
  35. [35]
    F.J. Botella and L.-L. Chau, Anticipating the Higher Generations of Quarks from Rephasing Invariance of the Mixing Matrix, Phys. Lett. B 168 (1986) 97 [SPIRES].ADSGoogle Scholar
  36. [36]
    T. Kinoshita and A. Sirlin, Radiative corrections toFermi interactions, Phys. Rev. 113 (1959) 1652 [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    A. Sirlin, Current Algebra Formulation of Radiative Corrections in Gauge Theories and the Universality of the Weak Interactions, Rev. Mod. Phys. 50 (1978) 573 [Erratum ibid. 50 (1978) 905] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    W.J. Marciano and A. Sirlin, Electroweak radiative corrections to τ decay, Phys. Rev. 61 (1988) 1815.ADSGoogle Scholar
  39. [39]
    T. van Ritbergen and R.G. Stuart, Complete 2-loop quantum electrodynamic contributions to the muon lifetime in theFermi model, Phys. Rev. Lett. 82 (1999) 488 [hep-ph/9808283] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    MuLan collaboration, D.B. Chitwood et al., Improved Measurement of the Positive Muon Lifetime and Determination of theFermi Constant, Phys. Rev. Lett. 99 (2007) 032001 [arXiv:0704.1981] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    FAST collaboration, A. Barczyk et al., Measurement of theFermi Constant by FAST, Phys. Lett. B 663 (2008) 172 [arXiv:0707.3904] [SPIRES].ADSGoogle Scholar
  42. [42]
    Particle Data Group, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES] and 2009 partial update for the 2010 edition Review of particle physics.ADSGoogle Scholar
  43. [43]
    T. Sjostrand, Function ”ULALEM(Q2)”, taken from JETSET74, CERN (1993).Google Scholar
  44. [44]
    BABAR collaboration, B. Aubert et al., Measurements of Charged Current Lepton Universality and |V us| using Tau Lepton Decays to \( {e^{-} }{\overline \nu_e}{\nu_\tau },\,{\mu^{-} }\overline \nu \mu {\nu_\tau } \) and K ντ, arXiv:0912.0242 [SPIRES].
  45. [45]
    G. Altarelli, L. Baulieu, N. Cabibbo, L. Maiani and R. Petronzio, Muon Number Nonconserving Processes in Gauge Theories of Weak Interactions, Nucl. Phys. B 125 (1977) 285 [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [SPIRES].ADSGoogle Scholar
  47. [47]
    MEGA collaboration, M.L. Brooks et al., New Limit for the Family-Number Non-conserving Decay mu+ → e+γ, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    BABAR collaboration, B. Aubert et al., Searches for Lepton Flavor Violation in the Decays τ → eγ and τ → μγ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    E. Goudzovski and T. Spadaro, Prospects for lepton universality test with K e2/K μ2, talk at the NA62 Physics Handbook Workshop, CERN, 11 December 2009.Google Scholar
  50. [50]
    V. Cirigliano and I. Rosell, π/K → eν branching ratios to O(e 2 p 4) in Chiral Perturbation Theory, JHEP 10 (2007) 005 [arXiv:0707.4464] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., Precision tests of the Standard Model with leptonic and semileptonic kaon decays, arXiv:0801.1817 [SPIRES].
  52. [52]
    E. Blucher et al., Status of the Cabibbo angle, hep-ph/0512039 [SPIRES].
  53. [53]
    A. Sirlin, Large m(W),m(Z) Behavior of the O(α) Corrections to Semileptonic Processes Mediated by W, Nucl. Phys. B 196 (1982) 83 [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    V. Cirigliano, H. Neufeld and H. Pichl, K e3 decays and CKM unitarity, Eur. Phys. J. C 35 (2004) 53 [hep-ph/0401173] [SPIRES].ADSGoogle Scholar
  55. [55]
    V. Cirigliano, M. Knecht, H. Neufeld, H. Rupertsberger and P. Talavera, Radiative corrections to K l3 decays, Eur. Phys. J. C 23 (2002) 121 [hep-ph/0110153] [SPIRES].ADSGoogle Scholar
  56. [56]
    T.C. Andre, Radiative corrections to K0(l3) decays, Annals Phys. 322 (2007) 2518 [hep-ph/0406006] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  57. [57]
    V. Cirigliano, M. Giannotti and H. Neufeld, Electromagnetic effects in Kl3 decays, JHEP 11 (2008) 006 [arXiv:0807.4507] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    G. Czapek et al., Branching ratio for the rare pion decay into positron and neutrino, Phys. Rev. Lett. 70 (1993) 17 [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    D.I. Britton et al., Measurement of the π+e +ν branching ratio, Phys. Rev. Lett. 68 (1992) 3000 [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    D.I. Britton et al., Measurement of the π+e + neutrino branching ratio, Phys. Rev. D 49 (1994) 28 [SPIRES].ADSGoogle Scholar
  61. [61]
    D.A. Bryman et al., Measurement of the π → electron-neutrino branching ratio, Phys. Rev. D 33 (1986) 1211 [SPIRES].ADSGoogle Scholar
  62. [62]
    D.A. Bryman et al., New Measurement of the π → e neutrino branching ratio, Phys. Rev. Lett. 50 (1983) 7 [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    M. Finkemeier, Radiative corrections to π(l2) and K(l2) decays, Phys. Lett. B 387 (1996) 391 [hep-ph/9505434] [SPIRES].ADSGoogle Scholar
  64. [64]
    J.C. Hardy and I.S. Towner, Superallowed 0+ → 0+ nuclear beta decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model, Phys. Rev. C 79 (2009) 055502 [arXiv:0812.1202] [SPIRES].ADSGoogle Scholar
  65. [65]
    H. Abramowicz et al., Experimental Study of Opposite Sign Dimuons Produced in Neutrino and anti-neutrinos Interactions, Z. Phys. C 15 (1982) 19 [SPIRES].ADSGoogle Scholar
  66. [66]
    CCFR collaboration, A.O. Bazarko et al., Determination of the strange quark content of the nucleon from a next-to-leading order QCD analysis of neutrino charm production, Z. Phys. C 65 (1995) 189 [hep-ex/9406007] [SPIRES].ADSGoogle Scholar
  67. [67]
    CHARM II collaboration, P. Vilain et al., Leading order QCD analysis of neutrino induced dimuon events, Eur. Phys. J. C 11 (1999) 19 [SPIRES=].CrossRefADSGoogle Scholar
  68. [68]
    T. Bolton, Determining the CKM parameter |V cd| from νN charm production, hep-ex/9708014 [SPIRES].
  69. [69]
    Fermilab E531 collaboration, N. Ushida et al., Cross-Sections For Neutrino Production Of Charmed Particles, Phys. Lett. B 206 (1988) 375 [SPIRES].
  70. [70]
    CLEO collaboration, Y. Kubota et al., Measurements of the inclusive semielectronic D0 branching fraction, Phys. Rev. D 54 (1996) 2994 [hep-ex/9511014] [SPIRES].Google Scholar
  71. [71]
    M.T. Dova, J. Swain and L. Taylor, Constraints on anomalous charged current couplings, τ- neutrino mass and fourth generation mixing from τ leptonic branching fractions, Nucl. Phys. Proc. Suppl. 76 (1999) 133 [hep-ph/9811209] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    J. Swain and L. Taylor, Constraints on the τ neutrino mass and mixing from precise measurements of τ decay rates, Phys. Rev. D 55 (1997) 1 [hep-ph/9610242] [SPIRES].ADSGoogle Scholar
  73. [73]
    J. Swain and L. Taylor, New constraints on the τ neutrino mass and fourth generation mixing, hep-ph/9712383 [SPIRES].
  74. [74]
    M. Breskvar, D. Lukman and N.S. Mankoc Borstnik, On the origin of families of fermions and their mass matrices: Approximate analyses of properties of four families within approach unifying spins and charges, hep-ph/0606159 [SPIRES].
  75. [75]
    S. Weinberg, The Problem of Mass, Ann. N.Y. Acad. Sci. 38 (1977) 185.Google Scholar
  76. [76]
    H. Fritzsch, Quark Masses and Flavor Mixing, Nucl. Phys. B 155 (1979) 189 [SPIRES].CrossRefADSGoogle Scholar
  77. [77]
    H. Fritzsch, Hierarchical Chiral Symmetries and the Quark Mass Matrix, Phys. Lett. B 184 (1987) 391 [SPIRES].ADSGoogle Scholar
  78. [78]
    P. H. Frampton, P. Q. Hung and M. Sher, Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263 [hep-ph/9903387] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Humboldt-Universität zu BerlinInstitut für PhysikBerlinGermany

Personalised recommendations