QCD effective charges from lattice data

  • A. C. Aguilar
  • D. BinosiEmail author
  • J. Papavassiliou
Open Access


We use recent lattice data on the gluon and ghost propagators, as well as the Kugo-Ojima function, in order to extract the non-perturbative behavior of two particular definitions of the QCD effective charge, one based on the pinch technique construction, and one obtained from the standard ghost-gluon vertex. The construction relies crucially on the definition of two dimensionful quantities, which are invariant under the renormalization group, and are built out of very particular combinations of the aforementioned Green’s functions. The main non-perturbative feature of both effective charges, encoded in the infrared finiteness of the gluon propagator and ghost dressing function used in their definition, is the freezing at a common finite (non-vanishing) value, in agreement with a plethora of theoretical and phenomenological expectations. We discuss the sizable discrepancy between the freezing values obtained from the present lattice analysis and the corresponding estimates derived from several phenomenological studies, and attribute its origin to the difference in the gauges employed. A particular toy calculation suggests that the modifications induced to the non-perturbative gluon propagator by the gauge choice may indeed account for the observed deviation of the freezing values.


Nonperturbative Effects QCD 


  1. [1]
    A. Cucchieri and T. Mendes, What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS(LATTICE 2007)297 [arXiv:0710.0412] [SPIRES].
  2. [2]
    A. Cucchieri and T. Mendes, Landau-gauge propagators in Yang-Mills theories at β = 0: massive solution versus conformal scaling, Phys. Rev. D 81 (2010) 016005 [arXiv:0904.4033] [SPIRES].ADSGoogle Scholar
  3. [3]
    I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes, PoS(LATTICE 2007)290 [arXiv:0710.1968] [SPIRES].
  4. [4]
    I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B 676 (2009) 69 [arXiv:0901.0736] [SPIRES].ADSGoogle Scholar
  5. [5]
    O. Oliveira and P.J. Silva, The lattice infrared Landau gauge gluon propagator: the infinite volume limit, arXiv:0910.2897 [SPIRES].
  6. [6]
    O. Oliveira and P.J. Silva, The lattice infrared Landau gauge gluon propagator: from finite volume to the infinite volume, arXiv:0911.1643 [SPIRES].
  7. [7]
    J.M. Cornwall, Dynamical Mass Generation in Continuum QCD, Phys. Rev. D 26 (1982) 1453 [SPIRES].ADSGoogle Scholar
  8. [8]
    J.M. Cornwall and J. Papavassiliou, Gauge Invariant Three Gluon Vertex in QCD, Phys. Rev. D 40 (1989) 3474 [SPIRES].ADSGoogle Scholar
  9. [9]
    D. Binosi and J. Papavassiliou, Pinch Technique: Theory and Applications, Phys. Rept. 479 (2009) 1 [arXiv:0909.2536] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    N.J. Watson, The gauge-independent QCD effective charge, Nucl. Phys. B 494 (1997) 388 [hep-ph/9606381] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    D. Binosi and J. Papavassiliou, The QCD effective charge to all orders, Nucl. Phys. Proc. Suppl. 121 (2003) 281 [hep-ph/0209016] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  12. [12]
    A. Pilaftsis, Generalized pinch technique and the background field method in general gauges, Nucl. Phys. B 487 (1997) 467 [hep-ph/9607451] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    A. Denner, G. Weiglein and S. Dittmaier, Gauge invariance of green functions: Background field method versus pinch technique, Phys. Lett. B 333 (1994) 420 [hep-ph/9406204] [SPIRES].ADSGoogle Scholar
  14. [14]
    S. Hashimoto, J. Kodaira, Y. Yasui and K. Sasaki, The Background field method: Alternative way of deriving the pinch technique’s results, Phys. Rev. D 50 (1994) 7066 [hep-ph/9406271] [SPIRES].ADSGoogle Scholar
  15. [15]
    J. Papavassiliou, On the connection between the pinch technique and the background field method, Phys. Rev. D 51 (1995) 856 [hep-ph/9410385] [SPIRES].ADSGoogle Scholar
  16. [16]
    D. Binosi and J. Papavassiliou, The pinch technique to all orders, Phys. Rev. D 66 (2002) 111901 [hep-ph/0208189] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    D. Binosi and J. Papavassiliou, Pinch technique self-energies and vertices to all orders in perturbation theory, J. Phys. G 30 (2004) 203 [hep-ph/0301096] [SPIRES].ADSGoogle Scholar
  18. [18]
    L.F. Abbott, The Background Field Method Beyond One Loop, Nucl. Phys. B 185 (1981) 189 [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    J.C. Taylor, Ward Identities and Charge Renormalization of the Yang-Mills Field, Nucl. Phys. B 33 (1971) 436 [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    W.J. Marciano and H. Pagels, Quantum Chromodynamics: A Review, Phys. Rept. 36 (1978) 137 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    R. Alkofer, C.S. Fischer and F.J. Llanes-Estrada, Vertex functions and infrared fixed point in Landau gauge SU(N) Yang-Mills theory, Phys. Lett. B 611 (2005) 279 [Erratum ibid. 670 (2009) 460] [hep-th/0412330] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    P.A. Grassi, T. Hurth and M. Steinhauser, Practical algebraic renormalization, Annals Phys. 288 (2001) 197 [hep-ph/9907426] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. [23]
    D. Binosi and J. Papavassiliou, Pinch technique and the Batalin-Vilkovisky formalism, Phys. Rev. D 66 (2002) 025024 [hep-ph/0204128] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    D. Binosi and J. Papavassiliou, Gauge-invariant truncation scheme for the Schwinger-Dyson equations of QCD, Phys. Rev. D 77 (2008) 061702 [arXiv:0712.2707] [SPIRES].ADSGoogle Scholar
  25. [25]
    D. Binosi and J. Papavassiliou, New Schwinger-Dyson equations for non-Abelian gauge theories, JHEP 11 (2008) 063 [arXiv:0805.3994] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    T. Kugo and I. Ojima, Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem, Prog. Theor. Phys. Suppl. 66 (1979) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    A.C. Aguilar, D. Binosi, J. Papavassiliou and J. Rodriguez-Quintero, Non-perturbative comparison of QCD effective charges, Phys. Rev. D 80 (2009) 085018 [arXiv:0906.2633] [SPIRES].ADSGoogle Scholar
  28. [28]
    A.C. Mattingly and P.M. Stevenson, Optimization of R(e+ e−) and ’freezing’ of the QCD couplant at low-energies, Phys. Rev. D 49 (1994) 437 [hep-ph/9307266] [SPIRES].ADSGoogle Scholar
  29. [29]
    Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Dispersive Approach to Power-Behaved Contributions in QCD Hard Processes, Nucl. Phys. B 469 (1996) 93 [hep-ph/9512336] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    L. von Smekal, R. Alkofer and A. Hauck, The infrared behavior of gluon and ghost propagators in Landau gauge QCD, Phys. Rev. Lett. 79 (1997) 3591 [hep-ph/9705242] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    A.M. Badalian and V.L. Morgunov, Determination of α s (1GeV) from the charmonium fine structure, Phys. Rev. D 60 (1999) 116008 [hep-ph/9901430] [SPIRES].ADSGoogle Scholar
  32. [32]
    A.C. Aguilar, A.A. Natale and P.S. Rodrigues da Silva, Relating a gluon mass scale to an infrared fixed point in pure gauge QCD, Phys. Rev. Lett. 90 (2003) 152001 [hep-ph/0212105] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    S.J. Brodsky, S. Menke, C. Merino and J. Rathsman, On the Behavior of the Effective QCD Coupling α τ(s) at Low Scales, Phys. Rev. D 67 (2003) 055008 [hep-ph/0212078] [SPIRES].ADSGoogle Scholar
  34. [34]
    S.J. Brodsky, New perspectives for QCD: The novel effects of final-state interactions and near-conformal effective couplings, Fizika B 13 (2004) 91 [hep-ph/0310289] [SPIRES].Google Scholar
  35. [35]
    M. Baldicchi and G.M. Prosperi, Infrared behavior of the running coupling constant and bound states in QCD, Phys. Rev. D 66 (2002) 074008 [hep-ph/0202172] [SPIRES].ADSGoogle Scholar
  36. [36]
    G. Grunberg, Renormalization Scheme Independent QCD and QED: The Method of Effective Charges, Phys. Rev. D 29 (1984) 2315 [SPIRES].ADSGoogle Scholar
  37. [37]
    G. Grunberg, Evidence for infrared finite coupling in Sudakov resummation, Phys. Rev. D 73 (2006) 091901 [hep-ph/0603135] [SPIRES].ADSGoogle Scholar
  38. [38]
    H. Gies, Running coupling in Yang-Mills theory: A flow equation study, Phys. Rev. D 66 (2002) 025006 [hep-th/0202207] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    D.V. Shirkov and I.L. Solovtsov, Analytic model for the QCD running coupling with universal α s(0) value, Phys. Rev. Lett. 79 (1997) 1209 [hep-ph/9704333] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    J.A. Gracey, One loop gluon form factor and freezing of α s in the Gribov-Zwanziger QCD Lagrangian, JHEP 05 (2006) 052 [Erratum ibid. 1002 (2010) 078] [hep-ph/0605077] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    G.M. Prosperi, M. Raciti and C. Simolo, On the running coupling constant in QCD, Prog. Part. Nucl. Phys. 58 (2007) 387 [hep-ph/0607209] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    S.J. Brodsky and G.F. de Teramond, Light-front hadron dynamics and AdS/CFT correspondence, Phys. Lett. B 582 (2004) 211 [hep-th/0310227] [SPIRES].ADSGoogle Scholar
  43. [43]
    S.J. Brodsky, G.F. de Teramond and A. Deur, Nonperturbative QCD Coupling and its β function from Light-Front Holography, Phys. Rev. D 81 (2010) 096010 [arXiv:1002.3948] [SPIRES].ADSGoogle Scholar
  44. [44]
    A.C. Aguilar, D. Binosi and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D 78 (2008) 025010 [arXiv:0802.1870] [SPIRES].ADSGoogle Scholar
  45. [45]
    F.V. Gubarev, L. Stodolsky and V.I. Zakharov, On the significance of the quantity A 2, Phys. Rev. Lett. 86 (2001) 2220 [hep-ph/0010057] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    P. Boucaud et al., Testing Landau gauge OPE on the lattice with a < A 2 > condensate, Phys. Rev. D 63 (2001) 114003 [hep-ph/0101302] [SPIRES].ADSGoogle Scholar
  47. [47]
    F.V. Gubarev and V.I. Zakharov, Emerging phenomenology of < A min 2 >, Phys. Lett. B 501 (2001) 28 [hep-ph/0010096] [SPIRES].ADSGoogle Scholar
  48. [48]
    J.A. Gracey, One loop renormalization of the non-local gauge invariant operator min{U}d 4 x(AμaU)2 in QCD, Phys. Lett. B 651 (2007) 253 [arXiv:0706.1440] [SPIRES].ADSGoogle Scholar
  49. [49]
    M. Lavelle, Gauge invariant effective gluon mass from the operator product expansion, Phys. Rev. D 44 (1991) 26 [SPIRES].ADSGoogle Scholar
  50. [50]
    A.C. Aguilar and J. Papavassiliou, Power-law running of the effective gluon mass, Eur. Phys. J. A 35 (2008) 189 [arXiv:0708.4320] [SPIRES].ADSGoogle Scholar
  51. [51]
    D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel and H. Verschelde, A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008) 065047 [arXiv:0806.4348] [SPIRES].ADSGoogle Scholar
  52. [52]
    C.W. Bernard, Monte Carlo Evaluation of the Effective Gluon Mass, Phys. Lett. B 108 (1982) 431 [SPIRES].ADSGoogle Scholar
  53. [53]
    C.W. Bernard, Adjoint Wilson lines and the effective gluon mass, Nucl. Phys. B 219 (1983) 341 [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    T. Iritani, H. Suganuma and H. Iida, Gluon-propagator functional form in the Landau gauge in SU(3) lattice QCD: Yukawa-type gluon propagator and anomalous gluon spectral function, Phys. Rev. D 80 (2009) 114505 [arXiv:0908.1311] [SPIRES].ADSGoogle Scholar
  55. [55]
    G. Parisi and R. Petronzio, On Low-Energy Tests of QCD, Phys. Lett. B 94 (1980) 51 [SPIRES].ADSGoogle Scholar
  56. [56]
    F. Halzen, G.I. Krein and A.A. Natale, Relating the QCD Pomeron to an effective gluon mass, Phys. Rev. D 47 (1993) 295 [SPIRES].ADSGoogle Scholar
  57. [57]
    F.J. Yndurain, Limits on the mass of the gluon, Phys. Lett. B 345 (1995) 524 [SPIRES].ADSGoogle Scholar
  58. [58]
    A. Szczepaniak, E.S. Swanson, C.-R. Ji and S.R. Cotanch, Glueball Spectroscopy in a Relativistic Many-Body Approach to Hadron Structure, Phys. Rev. Lett. 76 (1996) 2011 [hep-ph/9511422] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    J.H. Field, A phenomenological analysis of gluon mass effects in inclusive radiative decays of the J/ψ and Upsilon, Phys. Rev. D 66 (2002) 013013 [hep-ph/0101158] [SPIRES].ADSGoogle Scholar
  60. [60]
    A.C. Aguilar, A. Mihara and A.A. Natale, Freezing of the QCD coupling constant and solutions of Schwinger-Dyson equations, Phys. Rev. D 65 (2002) 054011 [hep-ph/0109223] [SPIRES].ADSGoogle Scholar
  61. [61]
    E.G.S. Luna, A.F. Martini, M.J. Menon, A. Mihara and A.A. Natale, Influence of a dynamical gluon mass in the p p and \( \bar{p}p \) forward scattering, Phys. Rev. D 72 (2005) 034019 [hep-ph/0507057] [SPIRES].ADSGoogle Scholar
  62. [62]
    E.G.S. Luna, Survival probability of large rapidity gaps in a QCD model with a dynamical infrared mass scale, Phys. Lett. B 641 (2006) 171 [hep-ph/0608091] [SPIRES].ADSGoogle Scholar
  63. [63]
    O. Oliveira and P. Bicudo, Running Gluon Mass from Landau Gauge Lattice QCD Propagator, arXiv:1002.4151 [SPIRES].
  64. [64]
    D. Dudal, O. Oliveira and N. Vandersickel, Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate < A 2 > in the Landau gauge, Phys. Rev. D 81 (2010) 074505 [arXiv:1002.2374] [SPIRES].ADSGoogle Scholar
  65. [65]
    J.S. Ball and T.-W. Chiu, Analytic properties of the vertex function in gauge theories. 2, Phys. Rev. D 22 (1980) 2550 [Erratum ibid. D 23 (1981) 3085]. [SPIRES].ADSGoogle Scholar
  66. [66]
    T. Kugo, The universal renormalization factors Z(1)/Z(3) and color confinement condition in non-Abelian gauge theory, hep-th/9511033 [SPIRES].
  67. [67]
    P.A. Grassi, T. Hurth and A. Quadri, On the Landau background gauge fixing and the IR properties of YM Green functions, Phys. Rev. D 70 (2004) 105014 [hep-th/0405104] [SPIRES].MathSciNetADSGoogle Scholar
  68. [68]
    K.-I. Kondo, Kugo-Ojima color confinement criterion and Gribov-Zwanziger horizon condition, Phys. Lett. B 678 (2009) 322 [arXiv:0904.4897] [SPIRES].MathSciNetADSGoogle Scholar
  69. [69]
    H. Nakajima and S. Furui, Test of the Kugo-Ojima confinement criterion in the lattice Landau gauge, Nucl. Phys. Proc. Suppl. 83 (2000) 521 [hep-lat/9909008] [SPIRES].ADSGoogle Scholar
  70. [70]
    H. Nakajima and S. Furui, Numerical study of lattice Landau gauge QCD and the Gribov copy problem, Nucl. Phys. Proc. Suppl. 141 (2005) 34 [hep-lat/0408001] [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    S. Furui and H. Nakajima, Infrared features of unquenched finite temperature lattice Landau gauge QCD, Phys. Rev. D 76 (2007) 054509 [hep-lat/0612009] [SPIRES].ADSGoogle Scholar
  72. [72]
    A. Sternbeck, The infrared behavior of lattice QCD Green’s functions, hep-lat/0609016 [SPIRES].
  73. [73]
    A.C. Aguilar, D. Binosi and J. Papavassiliou, Indirect determination of the Kugo-Ojima function from lattice data, JHEP 11 (2009) 066 [arXiv:0907.0153] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    A. Cucchieri, T. Mendes and A. Mihara, Numerical study of the ghost-gluon vertex in Landau gauge, JHEP 12 (2004) 012 [hep-lat/0408034] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    E.M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck and A. Schiller, Gauge-variant propagators and the running coupling from lattice QCD, hep-lat/0601027 [SPIRES].
  76. [76]
    P. Boucaud et al., Artefacts and < A 2 > power corrections: Reexamining Z ψ (p 2) and Z V,Phys. Rev. D 74 (2006) 034505 [hep-lat/0504017] [SPIRES].ADSGoogle Scholar
  77. [77]
    P. Boucaud et al., Ghost-gluon running coupling, power corrections and the determination of \( {\Lambda_{{\bar{M}S}}} \), Phys. Rev. D 79 (2009) 014508 [arXiv:0811.2059] [SPIRES].ADSGoogle Scholar
  78. [78]
    P. Boucaud et al., Gribov’s horizon and the ghost dressing function, Phys. Rev. D 80 (2009) 094501 [arXiv:0909.2615] [SPIRES].ADSGoogle Scholar
  79. [79]
    J.M. Cornwall, Positivity issues for the pinch-technique gluon propagator and their resolution, Phys. Rev. D 80 (2009) 096001 [arXiv:0904.3758] [SPIRES].ADSGoogle Scholar
  80. [80]
    G. Weiglein, Gauge dependence of Green functions and algebraic calculation of general two loop selfenergies, Diploma Thesis, University of Würzburg (1994).Google Scholar
  81. [81]
    G. Degrassi and A. Sirlin, Gauge invariant selfenergies and vertex parts of the Standard Model in the pinch technique framework, Phys. Rev. D 46 (1992) 3104 [SPIRES].ADSGoogle Scholar
  82. [82]
    J. Papavassiliou, Gauge independent transverse and longitudinal self energies and vertices via the pinch technique, Phys. Rev. D 50 (1994) 5958 [hep-ph/9406258] [SPIRES].ADSGoogle Scholar
  83. [83]
    A. Cucchieri, T. Mendes and E.M.S. Santos, Covariant gauge on the lattice: a new implementation, Phys. Rev. Lett. 103 (2009) 141602 [arXiv:0907.4138] [SPIRES].CrossRefADSGoogle Scholar
  84. [84]
    R.F. Dashen and D.J. Gross, The Relationship Between Lattice and Continuum Definitions of the Gauge Theory Coupling, Phys. Rev. D 23 (1981) 2340 [SPIRES].ADSGoogle Scholar
  85. [85]
    A.C. Aguilar and J. Papavassiliou, Infrared finite ghost propagator in the Feynman gauge, Phys. Rev. D 77 (2008) 125022 [arXiv:0712.0780] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Federal University of ABC, CCNHSanto AndréBrazil
  2. 2.European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*)Villazzano (TN)Italy
  3. 3.Department of Theoretical Physics and IFICUniversity of Valencia-CSICValenciaSpain

Personalised recommendations