General relativity and the cuprates



We add a periodic potential to the simplest gravitational model of a superconductor and compute the optical conductivity. In addition to a superfluid component, we find a normal component that has Drude behavior at low frequency followed by a power law fall-off. Both the exponent and coefficient of the power law are temperature independent and agree with earlier results computed above Tc. These results are in striking agreement with measurements on some cuprates. We also find a gap Δ = 4.0 Tc, a rapidly decreasing scattering rate, and “missing spectral weight” at low frequency, all of which also agree with experiments.


Holography and condensed matter physics (AdS/CMT) Gauge-gravity correspondence AdS-CFT Correspondence 


  1. [1]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D. van der Marel et al., Quantum critical behaviour in a high-T c superconductor, Nature 425 (2003) 271 [cond-mat/0309172].ADSCrossRefGoogle Scholar
  3. [3]
    D. van der Marel, F. Carbone, A.B. Kuzmenko and E. Giannini, Scaling properties of the optical conductivity of Bi-based cuprates, Ann. Phys. 321 (2006) 1716 [cond-mat/0604037].ADSCrossRefGoogle Scholar
  4. [4]
    A. El Azrak et al., Infrared properties of YBa2Cu3O7 and Bi2Sr2Can−1Cun O2n+4 thin films, Phys. Rev. B 49 (1994) 9846.ADSGoogle Scholar
  5. [5]
    P.W. Anderson, Infrared conductivity of cuprate metals: detailed fit using Luttinger-liquid theory, Phys. Rev. B 55 (1997) 11785 [cond-mat/9506140].ADSGoogle Scholar
  6. [6]
    T. Kato and M. Imada, Thermodynamics and optical conductivity of a dissipative carrier in a tight binding model, J. Phys. Soc. Jpn. 67 (1998) 2828 [cond-mat/9711208].ADSCrossRefGoogle Scholar
  7. [7]
    M.R. Norman and A.V. Chubukov, High-frequency behavior of the infrared conductivity of cuprates, Phys. Rev. B 73 (2006) 140501 [cond-mat/0511584].ADSGoogle Scholar
  8. [8]
    G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
  10. [10]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    J. Hwang, T. Timusk and G.D. Gu, Doping dependent optical properties of Bi2Sr2CaCu2O8+δ, J. Phys. Cond. Mat. 19 (2007) 125208 [cond-mat/0607653].ADSCrossRefGoogle Scholar
  13. [13]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Maeda, T. Okamura and J.-I. Koga, Inhomogeneous charged black hole solutions in asymptotically anti-de Sitter spacetime, Phys. Rev. D 85 (2012) 066003 [arXiv:1107.3677] [INSPIRE].ADSGoogle Scholar
  16. [16]
    Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality, JHEP 10 (2012) 036 [arXiv:1205.5227] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Flauger, E. Pajer and S. Papanikolaou, A striped holographic superconductor, Phys. Rev. D 83 (2011) 064009 [arXiv:1010.1775] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.A. Hutasoit, G. Siopsis and J. Therrien, Conductivity of strongly coupled striped superconductor, arXiv:1208.2964 [INSPIRE].
  19. [19]
    M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    P. Figueras, J. Lucietti and T. Wiseman, Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua, Class. Quant. Grav. 28 (2011) 215018 [arXiv:1104.4489] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    S. Ganguli, J.A. Hutasoit and G. Siopsis, Enhancement of critical temperature of a striped holographic superconductor, Phys. Rev. D 86 (2012) 125005 [arXiv:1205.3107] [INSPIRE].ADSGoogle Scholar
  22. [22]
    G.T. Horowitz, J.E. Santos and B. Way, A holographic Josephson junction, Phys. Rev. Lett. 106 (2011) 221601 [arXiv:1101.3326] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Berg, E. Fradkin, S.A. Kivelson and J. Tranquada, Striped superconductors: how the cuprates intertwine spin, charge and superconducting orders, arXiv:0901.4826.
  24. [24]
    G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Iizuka and K. Maeda, Towards the lattice effects on the holographic superconductor, JHEP 11 (2012) 117 [arXiv:1207.2943] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K.K. Gomes et al., Visualizing pair formation on the atomic scale in the high-T c superconductor Bi2Sr2CaCu2O8+δ , Nature 447 (2007) 569 [arXiv:0706.0214].ADSCrossRefGoogle Scholar
  27. [27]
    G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau model in AdS/CFT, Phys. Rev. D 82 (2010) 026001 [arXiv:1004.2707] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Orenstein, Optical conductivity and spatial inhomogeneity in cuprate superconductors, in Handbook of high-temperature superconductivity. Theory and experiment, J.R. Schrieffer and J.R. Brooks eds., Springer, New York U.S.A. (2007), pg. 299.Google Scholar
  30. [30]
    D.A. Bonn et al., Microwave determination of the quasiparticle scattering time in YBa2Cu3O6.95, Phys. Rev. B 47 (1993) 11314.ADSGoogle Scholar
  31. [31]
    D.R. Gulotta, C.P. Herzog and M. Kaminski, Sum rules from an extra dimension, JHEP 01 (2011) 148 [arXiv:1010.4806] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    W. Witczak-Krempa and S. Sachdev, The quasi-normal modes of quantum criticality, Phys. Rev. B 86 (2012) 235115 [arXiv:1210.4166] [INSPIRE].ADSGoogle Scholar
  33. [33]
    W. Witczak-Krempa and S. Sachdev, Dispersing quasinormal modes in 2 + 1 dimensional conformal field theories, Phys. Rev. B 87 (2013) 155149 [arXiv:1302.0847] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A.V. Boris et al., In-plane spectral weight shift of charge carriers in YBa2Cu3O6.9, Science 304 (2004) 708.ADSCrossRefGoogle Scholar
  35. [35]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    C.C. Homes, S.V. Dordevic, T. Valla and M. Strongin, Scaling of the superfluid density in high-temperature superconductors, Phys. Rev. B 72 (2005) 134517 [cond-mat/0410719].ADSGoogle Scholar
  38. [38]
    J. Erdmenger, P. Kerner and S. Muller, Towards a holographic realization of Homeslaw, JHEP 10 (2012) 021 [arXiv:1206.5305] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, JHEP 04 (2011) 051 [arXiv:1008.1581] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    D. Sudarsky and R.M. Wald, Extrema of mass, stationarity and staticity and solutions to the Einstein Yang-Mills equations, Phys. Rev. D 46 (1992) 1453 [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A

Personalised recommendations