Domain wall brane in squared curvature gravity

  • Yu-Xiao Liu
  • Yuan Zhong
  • Zhen-Hua Zhao
  • Hai-Tao Li


We suggest a thick braneworld model in the squared curvature gravity theory. Despite the appearance of higher order derivatives, the localization of gravity and various bulk matter fields is shown to be possible. The existence of the normalizable gravitational zero mode indicates that our four-dimensional gravity is reproduced. In order to localize the chiral fermions on the brane, two types of coupling between the fermions and the brane forming scalar is introduced. The first coupling leads us to a Schrödinger equation with a volcano potential, and the other a Pöschl-Teller potential. In both cases, the zero mode exists only for the left-hand fermions. Several massive KK states of the fermions can be trapped on the brane, either as resonant states or as bound states.


Large Extra Dimensions Field Theories in Higher Dimensions 


  1. [1]
    V.A. Rubakov and M.E. Shaposhnikov, Do we live inside a domain wall?, Phys. Lett. B 125 (1983) 136 [SPIRES].ADSGoogle Scholar
  2. [2]
    M. Visser, An exotic class of Kaluza-Klein models, Phys. Lett. B 159 (1985) 22 [hep-th/9910093] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    M. Gremm, Four-dimensional gravity on a thick domain wall, Phys. Lett. B 478 (2000) 434 [hep-th/9912060] [SPIRES].ADSGoogle Scholar
  6. [6]
    C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys. B 581 (2000) 309 [hep-th/0001033] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    A. Wang, Thick de Sitter brane worlds, dynamic black holes and localization of gravity, Phys. Rev. D 66 (2002) 024024 [hep-th/0201051] [SPIRES].ADSGoogle Scholar
  9. [9]
    D. Bazeia, A.R. Gomes and L. Losano, Gravity localization on thick branes: a numerical approach, Int. J. Mod. Phys. A 24 (2009) 1135 [arXiv:0708.3530] [SPIRES].ADSGoogle Scholar
  10. [10]
    V.A. Rubakov, Large and infinite extra dimensions: an introduction, Phys. Usp. 44 (2001) 871 [hep-ph/0104152] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    A. Perez-Lorenzana, An introduction to the brane world, hep-ph/0406279 [SPIRES].
  12. [12]
    R. Maartens and K. Koyama, Brane-world gravity, Living Rev. Rel. 13 (2010) 5 [arXiv:1004.3962] [SPIRES].Google Scholar
  13. [13]
    V. Dzhunushaliev, V. Folomeev and M. Minamitsuji, Thick brane solutions, Rept. Prog. Phys. 73 (2010) 066901 [arXiv:0904.1775] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S. Randjbar-Daemi and M.E. Shaposhnikov, On some new warped brane world solutions in higher dimensions, Phys. Lett. B 491 (2000) 329 [hep-th/0008087] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    S. Randjbar-Daemi and M.E. Shaposhnikov, Fermion zero-modes on brane-worlds, Phys. Lett. B 492 (2000) 361 [hep-th/0008079] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    Z. Kakushadze, Localized (super)gravity and cosmological constant, Nucl. Phys. B 589 (2000) 75 [hep-th/0005217] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Youm, Bulk fields in dilatonic and self-tuning flat domain walls, Nucl. Phys. B 589 (2000) 315 [hep-th/0002147] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    I. Oda, Localization of bulk fields on AdS 4 brane in AdS 5, Phys. Lett. B 508 (2001) 96 [hep-th/0012013] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    I. Oda, Localization of gravitino on a brane, Prog. Theor. Phys. 105 (2001) 667 [hep-th/0008134] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    C. Ringeval, P. Peter and J.-P. Uzan, Localization of massive fermions on the brane, Phys. Rev. D 65 (2002) 044016 [hep-th/0109194] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    M. Gogberashvili and P. Midodashvili, Localization of fields on a brane in six dimensions, Europhys. Lett. 61 (2003) 308 [hep-th/0111132] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R. Koley and S. Kar, Scalar kinks and fermion localisation in warped spacetimes, Class. Quant. Grav. 22 (2005) 753 [hep-th/0407158] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    M. Gogberashvili, A.B. Kobakhidze and A. Tureanu, Localizing gravity in extra dimensions, Eur. Phys. J. C 47 (2006) 857 [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    A. Melfo, N. Pantoja and J.D. Tempo, Fermion localization on thick branes, Phys. Rev. D 73 (2006) 044033 [hep-th/0601161] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    J.I. Silva-Marcos, Successful Yukawa structures in warped extra dimensions, JHEP 03 (2007) 113 [hep-ph/0701180] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    Y.-X. Liu, L.-D. Zhang, S.-W. Wei and Y.-S. Duan, Localization and mass spectrum of matters on Weyl thick branes, JHEP 08 (2008) 041 [arXiv:0803.0098] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    Y.-X. Liu, L.-D. Zhang, L.-J. Zhang and Y.-S. Duan, Fermions on thick branes in background of sine-Gordon kinks, Phys. Rev. D 78 (2008) 065025 [arXiv:0804.4553] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    Y.-X. Liu, X.-H. Zhang, L.-D. Zhang and Y.-S. Duan, Localization of matters on pure geometrical thick branes, JHEP 02 (2008) 067 [arXiv:0708.0065] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    Y.-X. Liu, C.-E. Fu, L. Zhao and Y.-S. Duan, Localization and mass spectra of fermions on symmetric and asymmetric thick branes, Phys. Rev. D 80 (2009) 065020 [arXiv:0907.0910] [SPIRES].ADSGoogle Scholar
  30. [30]
    Y.-X. Liu, J. Yang, Z.-H. Zhao, C.-E. Fu and Y.-S. Duan, Fermion localization and resonances on a de Sitter thick brane, Phys. Rev. D 80 (2009) 065019 [arXiv:0904.1785] [SPIRES].ADSGoogle Scholar
  31. [31]
    R. Guerrero, A. Melfo, N. Pantoja and R.O. Rodriguez, Gauge field localization on brane worlds, Phys. Rev. D 81 (2010) 086004 [arXiv:0912.0463] [SPIRES].ADSGoogle Scholar
  32. [32]
    Y.-X. Liu, C.-E. Fu, H. Guo, S.-W. Wei and Z.-H. Zhao, Bulk matters on a GRS-inspired braneworld, JCAP 12 (2010) 031 [arXiv:1002.2130] [SPIRES].ADSGoogle Scholar
  33. [33]
    Y.-X. Liu, H. Guo, C.-E. Fu and J.-R. Ren, Localization of matters on Anti-de Sitter thick branes, JHEP 02 (2010) 080 [arXiv:0907.4424] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    M. Gogberashvili, A. Herrera-Aguilar and D. Malagon-Morejon, A standing wave braneworld and associated Sturm-Liouville problem, arXiv:1012.4534 [SPIRES].
  35. [35]
    K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    G.A. Vilkovisky, Effective action in quantum gravity, Class. Quant. Grav. 9 (1992) 895 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    R.P. Woodard, Avoiding dark energy with 1/R modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    T.P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. [39]
    A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928] [SPIRES].Google Scholar
  40. [40]
    S. Nojiri and S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, arXiv:1011.0544 [SPIRES].
  41. [41]
    O. Corradini and Z. Kakushadze, Localized gravity and higher curvature terms, Phys. Lett. B 494 (2000) 302 [hep-th/0009022] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    M. Giovannini, Thick branes and Gauss-Bonnet self-interactions, Phys. Rev. D 64 (2001) 124004 [hep-th/0107233] [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    S. Nojiri, S.D. Odintsov and S. Ogushi, Cosmological and black hole brane world universes in higher derivative gravity, Phys. Rev. D 65 (2002) 023521 [hep-th/0108172] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    I.P. Neupane, Gravitational potential correction with Gauss-Bonnet interaction, Phys. Lett. B 512 (2001) 137 [hep-th/0104226] [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    C. Germani and C.F. Sopuerta, String inspired braneworld cosmology, Phys. Rev. Lett. 88 (2002) 231101 [hep-th/0202060] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    J.E. Lidsey and N.J. Nunes, Inflation in Gauss-Bonnet brane cosmology, Phys. Rev. D 67 (2003) 103510 [astro-ph/0303168] [SPIRES].MathSciNetADSGoogle Scholar
  47. [47]
    S.C. Davis, Generalised Israel junction conditions for a Gauss-Bonnet brane world, Phys. Rev. D 67 (2003) 024030 [hep-th/0208205] [SPIRES].ADSGoogle Scholar
  48. [48]
    Y.M. Cho and I.P. Neupane, Warped brane-world compactification with Gauss-Bonnet term, Int. J. Mod. Phys. A 18 (2003) 2703 [hep-th/0112227] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    M. Sami, N. Savchenko and A. Toporensky, Aspects of scalar field dynamics in Gauss-Bonnet brane worlds, Phys. Rev. D 70 (2004) 123528 [hep-th/0408140] [SPIRES].ADSGoogle Scholar
  50. [50]
    C. Barrabes and W. Israel, Lagrangian brane dynamics in general relativity and Einstein-Gauss-Bonnet gravity, Phys. Rev. D 71 (2005) 064008 [gr-qc/0502108] [SPIRES].MathSciNetADSGoogle Scholar
  51. [51]
    M. Parry, S. Pichler and D. Deeg, Higher-derivative gravity in brane world models, JCAP 04 (2005) 014 [hep-ph/0502048] [SPIRES].MathSciNetADSGoogle Scholar
  52. [52]
    K.A. Bronnikov and S.G. Rubin, Thick branes from nonlinear multidimensional gravity, Grav & Cosmol. 13 (2007) 191.MathSciNetADSzbMATHGoogle Scholar
  53. [53]
    N. Deruelle, M. Sasaki and Y. Sendouda, Junction conditions in f(R) theories of gravity, Prog. Theor. Phys. 119 (2008) 237 [arXiv:0711.1150] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  54. [54]
    A. Balcerzak and M.P. Dabrowski, Generalized Israel junction conditions for a fourth-order brane world, Phys. Rev. D 77 (2008) 023524 [arXiv:0710.3670] [SPIRES].MathSciNetADSGoogle Scholar
  55. [55]
    J.D. Barrow and S. Cotsakis, Inflation and the conformal structure of higher order gravity theories, Phys. Lett. B 214 (1988) 515 [SPIRES].MathSciNetADSGoogle Scholar
  56. [56]
    A.O. Barvinsky, A.Y. Kamenshchik and A.A. Starobinsky, Inflation scenario via the standard model Higgs boson and LHC, JCAP 11 (2008) 021 [arXiv:0809.2104] [SPIRES].ADSGoogle Scholar
  57. [57]
    V.I. Afonso, D. Bazeia, R. Menezes and A.Y. Petrov, f(R)-brane, Phys. Lett. B 658 (2007) 71 [arXiv:0710.3790] [SPIRES].MathSciNetADSGoogle Scholar
  58. [58]
    V. Dzhunushaliev, V. Folomeev, B. Kleihaus and J. Kunz, Some thick brane solutions in f(R)-gravity, JHEP 04 (2010) 130 [arXiv:0912.2812] [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    Y. Zhong, Y.-X. Liu and K. Yang, Tensor perturbations of f(R)-branes, Phys. Lett. B 699 (2011) 398 [arXiv:1010.3478] [SPIRES].ADSGoogle Scholar
  60. [60]
    Y.-X. Liu, H.-T. Li, Z.-H. Zhao, J.-X. Li and J.-R. Ren, Fermion resonances on multi-field thick branes, JHEP 10 (2009) 091 [arXiv:0909.2312] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    H.-T. Li, Y.-X. Liu, Z.-H. Zhao and H. Guo, Fermion resonances on a thick brane with a piecewise warp factor, Phys. Rev. D 83 (2011) 045006 [arXiv:1006.4240] [SPIRES].ADSGoogle Scholar
  62. [62]
    Z.-H. Zhao, Y.-X. Liu, H.-T. Li and Y.-Q. Wang, Effects of the variation of mass on fermion localization and resonances on thick branes, Phys. Rev. D 82 (2010) 084030 [arXiv:1004.2181] [SPIRES].ADSGoogle Scholar
  63. [63]
    B. Bajc and G. Gabadadze, Localization of matter and cosmological constant on a brane in anti de Sitter space, Phys. Lett. B 474 (2000) 282 [hep-th/9912232] [SPIRES].MathSciNetADSGoogle Scholar
  64. [64]
    I. Oda, Localization of matters on a string-like defect, Phys. Lett. B 496 (2000) 113 [hep-th/0006203] [SPIRES].ADSGoogle Scholar
  65. [65]
    Y.-X. Liu, Z.-H. Zhao, S.-W. Wei and Y.-S. Duan, Bulk matters on symmetric and asymmetric de Sitter thick branes, JCAP 02 (2009) 003 [arXiv:0901.0782] [SPIRES].ADSGoogle Scholar
  66. [66]
    B. Mukhopadhyaya, S. Sen and S. SenGupta, A Randall-Sundrum scenario with bulk dilaton and torsion, Phys. Rev. D 79 (2009) 124029 [arXiv:0903.0722] [SPIRES].ADSGoogle Scholar
  67. [67]
    M.O. Tahim, W.T. Cruz and C.A.S. Almeida, Tensor gauge field localization in branes, Phys. Rev. D 79 (2009) 085022 [arXiv:0808.2199] [SPIRES].ADSGoogle Scholar
  68. [68]
    H.R. Christiansen, M.S. Cunha and M.O. Tahim, Exact solutions for a Maxwell-Kalb-Ramond action with dilaton: Localization of massless and massive modes in a sine-Gordon brane-world, Phys. Rev. D 82 (2010) 085023 [arXiv:1006.1366] [SPIRES].ADSGoogle Scholar
  69. [69]
    R.R. Landim, G. Alencar, M.O. Tahim, M.A.M. Gomes and R.N.C. Filho, Dual Spaces of Resonance In Thick pBranes, arXiv:1010.1548 [SPIRES].
  70. [70]
    Y.-X. Liu, C.-E. Fu, H. Guo and H.-T. Li, Localization and mass spectra of bulk matter fields on two-field split-branes, arXiv:1102.4500 [SPIRES].
  71. [71]
    C.-E. Fu, Y.-X. Liu and H. Guo, Bulk matter fields on two-field thick branes, arXiv:1101.0336 [SPIRES].
  72. [72]
    S.L. Dubovsky and V.A. Rubakov, On models of gauge field localization on a brane, Int. J. Mod. Phys. A 16 (2001) 4331 [hep-th/0105243] [SPIRES].MathSciNetADSGoogle Scholar
  73. [73]
    Y.-X. Liu, L. Zhao and Y.-S. Duan, Localization of fermions on a string-like defect, JHEP 04 (2007) 097 [hep-th/0701010] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    C.A.S. Almeida, M.M. Ferreira, Jr., A.R. Gomes and R. Casana, Fermion localization and resonances on two-field thick branes, Phys. Rev. D 79 (2009) 125022 [arXiv:0901.3543] [SPIRES].MathSciNetADSGoogle Scholar
  75. [75]
    Z.-H. Zhao, Y.-X. Liu and H.-T. Li, Fermion localization on asymmetric two-field thick branes, Class. Quant. Grav. 27 (2010) 185001 [arXiv:0911.2572] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    Z.-H. Zhao, Y.-X. Liu, Y.-Q. Wang and H.-T. Li, Effects of temperature on thick branes and the fermion (quasi-)localization, JHEP 06 (2011) 045 [arXiv:1102.4894] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    J. Liang and Y.-S. Duan, Localization and mass spectrum of spin-1/2 fermionic field on a thick brane with poincare symmetry, Europhys. Lett. 87 (2009) 40005. ADSCrossRefGoogle Scholar
  78. [78]
    Y.-X. Liu, Y. Zhong and K. Yang, Scalar-kinetic branes, Europhys. Lett. 90 (2010) 51001 [arXiv:0907.1952] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    F. Correa and M.S. Plyushchay, Hidden supersymmetry in quantum bosonic systems, Annals Phys. 322 (2007) 2493 [hep-th/0605104] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  80. [80]
    F. Correa, V. Jakubsky and M.S. Plyushchay, Aharonov-Bohm effect on AdS 2 and nonlinear supersymmetry of reflectionless Poschl-Teller system, Annals Phys. 324 (2009) 1078 [arXiv:0809.2854] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Yu-Xiao Liu
    • 1
  • Yuan Zhong
    • 1
  • Zhen-Hua Zhao
    • 1
  • Hai-Tao Li
    • 1
  1. 1.Institute of Theoretical PhysicsLanzhou UniversityLanzhouChina

Personalised recommendations