Scalar mass dependence of angular variables in \( t\overline{t}\phi \) production


In this paper we explore CP discrimination in the associated production of top-quark pairs (\( t\overline{t} \)) with a generic scalar boson (𝜙) at the LHC. We probe the CP-sensitivity of several observables for a varying scalar boson mass and CP-number, either CP-even (𝜙 = H ) or CP-odd (𝜙 = A), using dileptonic final states of the \( t\overline{t}\phi \) system, with 𝜙 → \( b\overline{b} \). We show that CP-searches are virtually impossible for 𝜙 boson masses above a few hundred GeV in this channel. A full phenomenological analysis was performed, using Standard Model background and signal events generated with MadGraph5_aMC@NLO and reconstructed using a kinematic fit. The most sensitive CP-observables are used to compute Confidence Levels (CLs), as a function of luminosity, for the exclusion of different signal hypotheses with scalar and pseudoscalar boson masses that range from m𝜙 = 40 GeV up to 200 GeV. We finalize by analysing the impact of a measurement (or limit) of the CP-violating angle in the parameter space of a complex two-Higgs doublet model known as the C2HDM.

A preprint version of the article is available at ArXiv.


  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. [2]

    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. [3]

    A.D. Sakharov, Violation of CP Invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].

    Google Scholar 

  4. [4]

    T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    I.F. Ginzburg, M. Krawczyk and P. Osland, Two-Higgs-Doublet Models with CP-violation, CERN-TH-2002-330 (2002) [hep-ph/0211371] [INSPIRE].

  6. [6]

    W. Khater and P. Osland, CP violation in top quark production at the LHC and two Higgs doublet models, Nucl. Phys. B 661 (2003) 209 [hep-ph/0302004] [INSPIRE].

  7. [7]

    A.W. El Kaffas, P. Osland and O.M. Ogreid, CP violation, stability and unitarity of the two Higgs doublet model, Nonlin. Phenom. Complex Syst. 10 (2007) 347 [hep-ph/0702097] [INSPIRE].

  8. [8]

    B. Grzadkowski and P. Osland, Tempered Two-Higgs-Doublet Model, Phys. Rev. D 82 (2010) 125026 [arXiv:0910.4068] [INSPIRE].

    ADS  MATH  Google Scholar 

  9. [9]

    A. Arhrib, E. Christova, H. Eberl and E. Ginina, CP violation in charged Higgs production and decays in the Complex Two Higgs Doublet Model, JHEP 04 (2011) 089 [arXiv:1011.6560] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    A. Barroso, P.M. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    K. Cheung, J.S. Lee, E. Senaha and P.-Y. Tseng, Confronting Higgcision with Electric Dipole Moments, JHEP 06 (2014) 149 [arXiv:1403.4775] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    D. Fontes, J.C. Romão and J.P. Silva, h → Zγ in the complex two Higgs doublet model, JHEP 12 (2014) 043 [arXiv:1408.2534] [INSPIRE].

  14. [14]

    D. Fontes, J.C. Romão, R. Santos and J.P. Silva, Large pseudoscalar Yukawa couplings in the complex 2HDM, JHEP 06 (2015) 060 [arXiv:1502.01720] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    C.-Y. Chen, S. Dawson and Y. Zhang, Complementarity of LHC and EDMs for Exploring Higgs CP-violation, JHEP 06 (2015) 056 [arXiv:1503.01114] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    M. Mühlleitner, M.O.P. Sampaio, R. Santos and J. Wittbrodt, Phenomenological Comparison of Models with Extended Higgs Sectors, JHEP 08 (2017) 132 [arXiv:1703.07750] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    D. Fontes, M. Mühlleitner, J.C. Romão, R. Santos, J.P. Silva and J. Wittbrodt, The C2HDM revisited, JHEP 02 (2018) 073 [arXiv:1711.09419] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    J.F. Gunion and X.-G. He, Determining the CP nature of a neutral Higgs boson at the LHC, Phys. Rev. Lett. 76 (1996) 4468 [hep-ph/9602226] [INSPIRE].

  19. [19]

    F. Boudjema, R.M. Godbole, D. Guadagnoli and K.A. Mohan, Lab-frame observables for probing the top-Higgs interaction, Phys. Rev. D 92 (2015) 015019 [arXiv:1501.03157] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    S.P. Amor dos Santos et al., Angular distributions in \( t\overline{t}H \) (H → \( b\overline{b} \)) reconstructed events at the LHC, Phys. Rev. D 92 (2015) 034021 [arXiv:1503.07787] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    S. Amor Dos Santos et al., Probing the CP nature of the Higgs coupling in \( t\overline{t}h \)events at the LHC, Phys. Rev. D 96 (2017) 013004 [arXiv:1704.03565] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J. C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    N. Mileo, K. Kiers, A. Szynkman, D. Crane and E. Gegner, Pseudoscalar top-Higgs coupling: exploration of CP-odd observables to resolve the sign ambiguity, JHEP 07 (2016) 056 [arXiv:1603.03632] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    K. Cheung, A. Jueid, Y.-N. Mao and S. Moretti, The 2-Higgs-Doublet Model with Soft CP-violation Confronting Electric Dipole Moments and Colliders, arXiv:2003.04178 [INSPIRE].

  25. [25]

    S. Berge, W. Bernreuther and J. Ziethe, Determining the CP parity of Higgs bosons at the LHC in their tau decay channels, Phys. Rev. Lett. 100 (2008) 171605 [arXiv:0801.2297] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S. Berge and W. Bernreuther, Determining the CP parity of Higgs bosons at the LHC in the tau to 1-prong decay channels, Phys. Lett. B 671 (2009) 470 [arXiv:0812.1910] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    S. Berge, W. Bernreuther, B. Niepelt and H. Spiesberger, How to pin down the CP quantum numbers of a Higgs boson in its tau decays at the LHC, Phys. Rev. D 84 (2011) 116003 [arXiv:1108.0670] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    S. Berge, W. Bernreuther and S. Kirchner, Determination of the Higgs CP-mixing angle in the tau decay channels at the LHC including the Drell-Yan background, Eur. Phys. J. C 74 (2014) 3164 [arXiv:1408.0798] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    S. Berge, W. Bernreuther and S. Kirchner, Prospects of constraining the Higgs boson’s CP nature in the tau decay channel at the LHC, Phys. Rev. D 92 (2015) 096012 [arXiv:1510.03850] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].

  31. [31]

    D. Fontes, M. Mühlleitner, J.C. Romão, R. Santos, J.P. Silva and J. Wittbrodt, Summary of “Extended Higgs Sector” group activities, Talk presented by D. Fontes at The 16th Workshop of the LHC Higgs Cross Section Working Group, October, 2019.

  32. [32]

    D. Fontes, M. Mühlleitner, J.C. Romão, R. Santos, J.P. Silva and J. Wittbrodt, C2HDM Higgs pair production, Talk presented by R. Santos at The 16th Workshop of the LHC Higgs Cross Section Working Group, October, 2019.

  33. [33]

    A. Broggio, A. Ferroglia, M.C.N. Fiolhais and A. Onofre, Pseudoscalar couplings in \( t\overline{t}H \)production at NLO+NLL accuracy, Phys. Rev. D 96 (2017) 073005 [arXiv:1707.01803] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    A. Broggio, A. Ferroglia, R. Frederix, D. Pagani, B.D. Pecjak and I. Tsinikos, Top-quark pair hadroproduction in association with a heavy boson at NLO+NNLL including EW corrections, JHEP 08 (2019) 039 [arXiv:1907.04343] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    A. Kulesza, L. Motyka, D. Schwartländer, T. Stebel and V. Theeuwes, Associated production of a top quark pair with a heavy electroweak gauge boson at NLO+NNLL accuracy, Eur. Phys. J. C 79 (2019) 249 [arXiv:1812.08622] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    A. Broggio, A. Ferroglia, B.D. Pecjak and L.L. Yang, NNLL resummation for the associated production of a top pair and a Higgs boson at the LHC, JHEP 02 (2017) 126 [arXiv:1611.00049] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    A. Broggio, A. Ferroglia, B.D. Pecjak, A. Signer and L.L. Yang, Associated production of a top pair and a Higgs boson beyond NLO, JHEP 03 (2016) 124 [arXiv:1510.01914] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    F. Maltoni, D. Pagani and I. Tsinikos, Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on \( t\overline{t}H \)searches at the LHC, JHEP 02 (2016) 113 [arXiv:1507.05640] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    D. Azevedo, A. Onofre, F. Filthaut and R. Gonçalo, CP tests of Higgs couplings in \( t\overline{t}h \)semileptonic events at the LHC, Phys. Rev. D 98 (2018) 033004 [arXiv:1711.05292] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    A. Ferroglia, M.C.N. Fiolhais, E. Gouveia and A. Onofre, Role of the \( t\overline{t}h \)rest frame in direct top-quark Yukawa coupling measurements, Phys. Rev. D 100 (2019) 075034 [arXiv:1909.00490] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    A.V. Gritsan, R. Röntsch, M. Schulze and M. Xiao, Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques, Phys. Rev. D 94 (2016) 055023 [arXiv:1606.03107] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    T. Ghosh, R. Godbole and X. Tata, Determining the spacetime structure of bottom-quark couplings to spin-zero particles, Phys. Rev. D 100 (2019) 015026 [arXiv:1904.09895] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  43. [43]

    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  48. [48]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber and C.D. White, The MCaNLO 4.0 Event Generator, arXiv:1010.0819 [INSPIRE].

  50. [50]

    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  51. [51]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    A. Hocker et al., TMVA — Toolkit for Multivariate Data Analysis, physics/0703039 [INSPIRE].

  55. [55]

    A.L. Read, Presentation of search results: The CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to Rui Santos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2003.09043

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azevedo, D., Capucha, R., Onofre, A. et al. Scalar mass dependence of angular variables in \( t\overline{t}\phi \) production. J. High Energ. Phys. 2020, 155 (2020).

Download citation


  • Beyond Standard Model
  • CP violation