Global fluid fits to identified particle transverse momentum spectra from heavy-ion collisions at the Large Hadron Collider

Abstract

Transverse momentum spectra of identified particles produced in heavy-ion collisions at the Large Hadron Collider are described with relativistic fluid dynamics. We perform a systematic comparison of experimental data for pions, kaons and protons up to a transverse momentum of 3 GeV/c with calculations using the FluiduM code package to solve the evolution equations of fluid dynamics, the TrENTo model to describe the initial state and the FastReso code to take resonance decays into account. Using data in five centrality classes at the center-of-mass collision energy per nucleon pair \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, we determine systematically the most likely parameters of our theoretical model including the shear and bulk viscosity to entropy ratios, the initialization time, initial density and freeze-out temperature through a global search and quantify their posterior probability. This is facilitated by the very efficient numerical implementation of FluiduM and FastReso. Based on the most likely model parameters we present predictions for the transverse momentum spectra of multi-strange hadrons as well as identified particle spectra from Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    W. Busza, K. Rajagopal and W. van der Schee, Heavy ion collisions: the big picture and the big questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].

  3. [3]

    STAR collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

  4. [4]

    PHENIX collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

  5. [5]

    J.L. Nagle and W.A. Zajc, Small system collectivity in relativistic hadronic and nuclear collisions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 211 [arXiv:1801.03477] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    PHENIX collaboration, Creation of quark–gluon plasma droplets with three distinct geometries, Nature Phys. 15 (2019) 214 [arXiv:1805.02973] [INSPIRE].

  7. [7]

    ALICE collaboration, Investigations of anisotropic flow using multiparticle azimuthal correlations in p-p, p-Pb, Xe-Xe and Pb-Pb collisions at the LHC, Phys. Rev. Lett. 123 (2019) 142301 [arXiv:1903.01790] [INSPIRE].

  8. [8]

    M. Mace, V.V. Skokov, P. Tribedy and R. Venugopalan, Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the color glass condensate, Phys. Rev. Lett. 121 (2018) 052301 [Erratum ibid. 123 (2019) 039901] [arXiv:1805.09342] [INSPIRE].

  9. [9]

    C. Bierlich, G. Gustafson, L. Lönnblad and H. Shah, The Angantyr model for heavy-ion collisions in PYTHIA8, JHEP 10 (2018) 134 [arXiv:1806.10820] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    M. Greif et al., Importance of initial and final state effects for azimuthal correlations in p+Pb collisions, Phys. Rev. D 96 (2017) 091504 [arXiv:1708.02076] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    Z.-W. Lin et al., A multi-phase transport model for relativistic heavy ion collisions, Phys. Rev. C 72 (2005) 064901 [nucl-th/0411110] [INSPIRE].

  12. [12]

    Y. Zhou, X. Zhu, P. Li and H. Song, Investigation of possible hadronic flow in \( \sqrt{s_{NN}} \)= 5.02 TeV p − P b collisions, Phys. Rev. C 91 (2015) 064908 [arXiv:1503.06986] [INSPIRE].

  13. [13]

    J.S. Moreland, J.E. Bernhard and S.A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions, Phys. Rev. C 92 (2015) 011901 [arXiv:1412.4708] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    S. Floerchinger, E. Grossi and J. Lion, Fluid dynamics of heavy ion collisions with mode expansion, Phys. Rev. C 100 (2019) 014905 [arXiv:1811.01870] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    A. Mazeliauskas, S. Floerchinger, E. Grossi and D. Teaney, Fast resonance decays in nuclear collisions, Eur. Phys. J. C 79 (2019) 284 [arXiv:1809.11049] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    S. Borsányi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539 (2016) 69 [arXiv:1606.07494] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    HotQCD collaboration, Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].

  18. [18]

    P. Alba et al., Constraining the hadronic spectrum through QCD thermodynamics on the lattice, Phys. Rev. D 96 (2017) 034517 [arXiv:1702.01113] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    P. Alba et al., Effect of the QCD equation of state and strange hadronic resonances on multiparticle correlations in heavy ion collisions, Phys. Rev. C 98 (2018) 034909 [arXiv:1711.05207] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    P. Parotto, private communication.

  21. [21]

    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  22. [22]

    J.E. Bernhard et al., Applying bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    A. Mazeliauskas, S. Floerchinger, E. Grossi and D. Teaney, FastReso — Program for computing irreducible components of the particle distribution from direct resonance decays, https://github.com/amazeliauskas/FastReso (2018).

  24. [24]

    S. Floerchinger and U.A. Wiedemann, Mode-by-mode fluid dynamics for relativistic heavy ion collisions, Phys. Lett. B 728 (2014) 407 [arXiv:1307.3453] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    S. Floerchinger and U.A. Wiedemann, Kinetic freeze-out, particle spectra and harmonic flow coefficients from mode-by-mode hydrodynamics, Phys. Rev. C 89 (2014) 034914 [arXiv:1311.7613] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    S. Floerchinger and U.A. Wiedemann, Statistics of initial density perturbations in heavy ion collisions and their fluid dynamic response, JHEP 08 (2014) 005 [arXiv:1405.4393] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    S. Floerchinger and E. Grossi, Causality of fluid dynamics for high-energy nuclear collisions, JHEP 08 (2018) 186 [arXiv:1711.06687] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    J.S. Moreland, J.E. Bernhard and S.A. Bass, Bayesian calibration of a hybrid nuclear collision model using p-Pb and Pb-Pb data at energies available at the CERN Large Hadron Collider, Phys. Rev. C 101 (2020) 024911 [arXiv:1808.02106] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    G.S. Denicol, S. Jeon and C. Gale, Transport coefficients of bulk viscous pressure in the 14-moment approximation, Phys. Rev. C 90 (2014) 024912 [arXiv:1403.0962] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    HotQCD collaboration, Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795 (2019) 15 [arXiv:1812.08235] [INSPIRE].

  31. [31]

    HotQCD collaboration, The QCD crossover at zero and non-zero baryon densities from Lattice QCD, Nucl. Phys. A 982 (2019) 847 [arXiv:1807.05607] [INSPIRE].

  32. [32]

    F. Cooper and G. Frye, Comment on the single particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production, Phys. Rev. D 10 (1974) 186 [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    H. Bebie, P. Gerber, J.L. Goity and H. Leutwyler, The role of the entropy in an expanding hadronic gas, Nucl. Phys. B 378 (1992) 95 [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    D. Teaney, The effects of viscosity on spectra, elliptic flow and HBT radii, Phys. Rev. C 68 (2003) 034913 [nucl-th/0301099] [INSPIRE].

  35. [35]

    J.-F. Paquet et al., Production of photons in relativistic heavy-ion collisions, Phys. Rev. C 93 (2016) 044906 [arXiv:1509.06738] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    ALICE collaboration, Centrality dependence of π, K, p production in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. C 88 (2013) 044910 [arXiv:1303.0737] [INSPIRE].

  37. [37]

    C. Gale, S. Jeon and B. Schenke, Hydrodynamic modeling of heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340011 [arXiv:1301.5893] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    D.A. Teaney, Viscous hydrodynamics and the quark gluon plasma, in Quark-gluon plasma 4, R.C. Hwa and X.-N. Wang eds., World Scientific, Singapore (2010), arXiv:0905.2433 [INSPIRE].

  39. [39]

    A. Dubla et al., Towards QCD-assisted hydrodynamics for heavy-ion collision phenomenology, Nucl. Phys. A 979 (2018) 251 [arXiv:1805.02985] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    S. Ryu et al., Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider, Phys. Rev. C 97 (2018) 034910 [arXiv:1704.04216] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    J.E. Bernhard, J.S. Moreland and S.A. Bass, Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma, Nature Phys. (2019) 1113.

  42. [42]

    V. Begun and W. Florkowski, Bose-Einstein condensation of pions in heavy-ion collisions at the CERN Large Hadron Collider (LHC) energies, Phys. Rev. C 91 (2015) 054909 [arXiv:1503.04040] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    V. Begun, Fluctuations as a test of chemical non-equilibrium at the LHC, Phys. Rev. C 94 (2016) 054904 [arXiv:1603.02254] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    F. James, MINUIT function minimization and error analysis: reference manual version 94.1, (1994).

  45. [45]

    H. Song, S. Bass and U.W. Heinz, Spectra and elliptic flow for identified hadrons in 2.76 A TeV Pb + Pb collisions, Phys. Rev. C 89 (2014) 034919 [arXiv:1311.0157] [INSPIRE].

  46. [46]

    M. Alqahtani, M. Nopoush, R. Ryblewski and M. Strickland, Anisotropic hydrodynamic modeling of 2.76 TeV Pb-Pb collisions, Phys. Rev. C 96 (2017) 044910 [arXiv:1705.10191] [INSPIRE].

  47. [47]

    A. Mazeliauskas and V. Vislavicius, Temperature and fluid velocity on the freeze-out surface from π, K, p spectra in pp, p-Pb and Pb-Pb collisions, Phys. Rev. C 101 (2020) 014910 [arXiv:1907.11059] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    I. Melo and B. Tomášik, Kinetic freeze-out in central heavy-ion collisions between 7.7 and 2760 GeV per nucleon pair, J. Phys. G 47 (2020) 045107 [arXiv:1908.03023] [INSPIRE].

  49. [49]

    E. Schnedermann, J. Sollfrank and U.W. Heinz, Thermal phenomenology of hadrons from 200 A/GeV S+S collisions, Phys. Rev. C 48 (1993) 2462 [nucl-th/9307020] [INSPIRE].

  50. [50]

    P. Huovinen et al., Effects of ρ-meson width on pion distributions in heavy-ion collisions, Phys. Lett. B 769 (2017) 509 [arXiv:1608.06817] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    ALICE collaboration, Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. Lett. 106 (2011) 032301 [arXiv:1012.1657] [INSPIRE].

  52. [52]

    P. Bozek, Bulk and shear viscosities of matter created in relativistic heavy-ion collisions, Phys. Rev. C 81 (2010) 034909 [arXiv:0911.2397] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    H. Niemi, K.J. Eskola and R. Paatelainen, Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions, Phys. Rev. C 93 (2016) 024907 [arXiv:1505.02677] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    ALICE collaboration, \( {K}_S^0 \)and Λ production in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. Lett. 111 (2013) 222301 [arXiv:1307.5530] [INSPIRE].

  55. [55]

    ALICE collaboration, Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett. B 728 (2014) 216 [Erratum ibid. B 734 (2014) 409] [arXiv:1307.5543] [INSPIRE].

  56. [56]

    R. Bellwied et al., Freeze-out temperature from net-kaon fluctuations at energies available at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 99 (2019) 034912 [arXiv:1805.00088] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    M. Bluhm and M. Nahrgang, Freeze-out conditions from strangeness observables at RHIC, Eur. Phys. J. C 79 (2019) 155 [arXiv:1806.04499] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    R. Bellwied et al., Is there a flavor hierarchy in the deconfinement transition of QCD?, Phys. Rev. Lett. 111 (2013) 202302 [arXiv:1305.6297] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    STAR collaboration, Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program, Phys. Rev. C 96 (2017) 044904 [arXiv:1701.07065] [INSPIRE].

  60. [60]

    P. Alba et al., Influence of hadronic resonances on the chemical freeze-out in heavy-ion collisions, Phys. Rev. C 101 (2020) 054905 [arXiv:2002.12395] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    ALICE collaboration, Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. Lett. 116 (2016) 222302 [arXiv:1512.06104] [INSPIRE].

  62. [62]

    A. Kurkela, U.A. Wiedemann and B. Wu, Flow in AA and pA as an interplay of fluid-like and non-fluid like excitations, Eur. Phys. J. C 79 (2019) 965 [arXiv:1905.05139] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Decoding the phase structure of QCD via particle production at high energy, Nature 561 (2018) 321 [arXiv:1710.09425] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    Particle Data Group collaboration, Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

  65. [65]

    P.M. Lo, Resonance decay dynamics and their effects on pT -spectra of pions in heavy-ion collisions, Phys. Rev. C 97 (2018) 035210 [arXiv:1705.01514] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    B. Mohanty and J. Serreau, Disoriented chiral condensate: theory and experiment, Phys. Rept. 414 (2005) 263 [hep-ph/0504154] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Floerchinger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1909.10485

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Devetak, D., Dubla, A., Floerchinger, S. et al. Global fluid fits to identified particle transverse momentum spectra from heavy-ion collisions at the Large Hadron Collider. J. High Energ. Phys. 2020, 44 (2020). https://doi.org/10.1007/JHEP06(2020)044

Download citation

Keywords

  • Heavy Ion Phenomenology