Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data


The ANTARES neutrino telescope has an energy threshold of a few tens of GeV. This allows to study the phenomenon of atmospheric muon neutrino disappearance due to neutrino oscillations. In a similar way, constraints on the 3+1 neutrino model, which foresees the existence of one sterile neutrino, can be inferred. Using data collected by the ANTARES neutrino telescope from 2007 to 2016, a new measurement of Δm 232 and θ23 has been performed — which is consistent with world best-fit values — and constraints on the 3+1 neutrino model have been derived.

A preprint version of the article is available at ArXiv.


  1. [1]

    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].

  4. [4]

    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  5. [5]

    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

  6. [6]

    S.P. Mikheyev and A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

    Google Scholar 

  7. [7]

    S.P. Mikheev and A.Y. Smirnov, Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, Nuovo Cim. C 9 (1986) 17 [INSPIRE].

  8. [8]

    J. Coelho, OscProb,

  9. [9]

    ANTARES collaboration, ANTARES: the first undersea neutrino telescope, Nucl. Instrum. Meth. A 656 (2011) 11 [arXiv:1104.1607] [INSPIRE].

  10. [10]

    ANTARES collaboration, Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope, Phys. Lett. B 714 (2012) 224 [arXiv:1206.0645] [INSPIRE].

  11. [11]

    LSND collaboration, Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

  12. [12]

    MiniBooNE and SciBooNE collaborations, Dual baseline search for muon antineutrino disappearance at 0.1 eV 2 < Δm 2 < 100 eV 2, Phys. Rev. D 86 (2012) 052009 [arXiv:1208.0322] [INSPIRE].

  13. [13]

    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

  14. [14]

    MINOS+ collaboration, Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit, Phys. Rev. Lett. 122 (2019) 091803 [arXiv:1710.06488] [INSPIRE].

  15. [15]

    Super-Kamiokande collaboration, Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].

  16. [16]

    IceCube collaboration, Search for sterile neutrino mixing using three years of IceCube DeepCore data, Phys. Rev. D 95 (2017) 112002 [arXiv:1702.05160] [INSPIRE].

  17. [17]

    ANTARES collaboration, The ANTARES optical module, Nucl. Instrum. Meth. A 484 (2002) 369 [astro-ph/0112172] [INSPIRE].

  18. [18]

    ANTARES collaboration, Performance of the front-end electronics of the ANTARES neutrino telescope, Nucl. Instrum. Meth. A 622 (2010) 59 [arXiv:1007.2549] [INSPIRE].

  19. [19]

    ANTARES collaboration, The data acquisition system for the ANTARES neutrino telescope, Nucl. Instrum. Meth. A 570 (2007) 107 [astro-ph/0610029] [INSPIRE].

  20. [20]

    B. Bakker, Trigger studies for the Antares and KM3NeT neutrino telescopes, Master’s Thesis, University of Amsterdam (2011).

  21. [21]

    ANTARES collaboration, The Run-by-Run Monte Carlo simulation for the ANTARES experiment, EPJ Web Conf. 116 (2016) 02002 [INSPIRE].

  22. [22]

    ANTARES collaboration, Long-term monitoring of the ANTARES optical module efficiencies using 40K decays in sea water, Eur. Phys. J. C 78 (2018) 669 [arXiv:1805.08675] [INSPIRE].

  23. [23]

    D. Bailey, Monte Carlo tools and analysis methods for understanding the ANTARES experiment and predicting its sensitivity to dark matter, Ph.D. Thesis, Oxford University (2002).

  24. [24]

    M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara and S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model, Phys. Rev. D 92 (2015) 023004 [arXiv:1502.03916] [INSPIRE].

  25. [25]

    G. Carminati, M. Bazzotti, A. Margiotta and M. Spurio, Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE), Comput. Phys. Commun. 179 (2008) 915 [arXiv:0802.0562] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    Application Software Group collaboration, GEANT 3: a detector description and simulation tool, CERN Program Library Long Writeup W5013 (1995).

  27. [27]

    ANTARES collaboration, A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope, Astropart. Phys. 34 (2011) 652 [arXiv:1105.4116] [INSPIRE].

  28. [28]

    E. Visser, Neutrinos from the Milky Way, Ph.D. Thesis, Universiteit Leiden (2015).

  29. [29]

    C. Patrignani et al., The review of particle physics, Chin. Phys. C 40 (2016) 100001.

  30. [30]

    G.D. Barr, T.K. Gaisser, S. Robbins and T. Stanev, Uncertainties in atmospheric neutrino fluxes, Phys. Rev. D 74 (2006) 094009 [astro-ph/0611266] [INSPIRE].

  31. [31]

    IceCube collaboration, Measurement of atmospheric neutrino oscillations at 6-56 GeV with IceCube DeepCore, Phys. Rev. Lett. 120 (2018) 071801 [arXiv:1707.07081] [INSPIRE].

  32. [32]

    ANTARES and KM3NeT collaborations, gSeaGen: a GENIE-based code for neutrino telescopes, EPJ Web Conf. 116 (2016) 08001 [arXiv:1602.00501] [INSPIRE].

  33. [33]

    C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator: physics and user manual, arXiv:1510.05494 [INSPIRE].

  34. [34]

    F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Neutrino masses and mixings: status of known and unknownparameters, Nucl. Phys. B 908 (2016) 218 [arXiv:1601.07777] [INSPIRE].

  35. [35]

    ANTARES collaboration, Transmission of light in deep sea water at the site of the ANTARES neutrino telescope, Astropart. Phys. 23 (2005) 131 [astro-ph/0412126] [INSPIRE].

  36. [36]

    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Signatures of a light sterile neutrino in T2HK, JHEP 04 (2018) 091 [arXiv:1801.04855] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].

  38. [38]

    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018:hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].

  39. [39]

    Super-Kamiokande collaboration, Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, Phys. Rev. D 97 (2018) 072001 [arXiv:1710.09126] [INSPIRE].

  40. [40]

    M. Sanchez, NOvA results and prospects, (2018).

  41. [41]

    M. Wascko, T2K status, results, and plans, (2018).

  42. [42]

    A. Aurisano, Recent results from MINOS and MINOS+, (2018).

  43. [43]

    M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, Phys. Rev. D 76 (2007) 093005 [arXiv:0705.0107] [INSPIRE].

  44. [44]

    S. Razzaque and A.Y. Smirnov, Searches for sterile neutrinos with IceCube DeepCore, Phys. Rev. D 85 (2012) 093010 [arXiv:1203.5406] [INSPIRE].

  45. [45]

    M. Blennow, E. Fernandez-Martinez, J. Gehrlein, J. Hernandez-Garcia and J. Salvado, IceCube bounds on sterile neutrinos above 10 eV, Eur. Phys. J. C 78 (2018) 807 [arXiv:1803.02362] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information




Corresponding author

Correspondence to I. Salvadori.

Additional information

ArXiv ePrint: 1812.08650

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The ANTARES collaboration., Albert, A., André, M. et al. Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data. J. High Energ. Phys. 2019, 113 (2019).

Download citation


  • Neutrino Detectors and Telescopes (experiments)
  • Oscillation