Advertisement

Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data

  • The ANTARES collaboration
  • A. Albert
  • M. André
  • M. Anghinolfi
  • G. Anton
  • M. Ardid
  • J.-J. Aubert
  • J. Aublin
  • T. Avgitas
  • B. Baret
  • J. Barrios-Martí
  • S. Basa
  • B. Belhorma
  • V. Bertin
  • S. Biagi
  • R. Bormuth
  • J. Boumaaza
  • S. Bourret
  • M. C. Bouwhuis
  • H. Brânzas
  • R. Bruijn
  • J. Brunner
  • J. Busto
  • A. Capone
  • L. Caramete
  • J. Carr
  • S. Celli
  • M. Chabab
  • R. Cherkaoui El Moursli
  • T. Chiarusi
  • M. Circella
  • A. Coleiro
  • M. Colomer
  • R. Coniglione
  • H. Costantini
  • P. Coyle
  • A. Creusot
  • A. F. Díaz
  • A. Deschamps
  • C. Distefano
  • I. Di Palma
  • A. Domi
  • R. Donà
  • C. Donzaud
  • D. Dornic
  • D. Drouhin
  • T. Eberl
  • I. El Bojaddaini
  • N. El Khayati
  • D. Elsässer
  • A. Enzenhöfer
  • A. Ettahiri
  • F. Fassi
  • P. Fermani
  • G. Ferrara
  • L. Fusco
  • P. Gay
  • H. Glotin
  • R. Gozzini
  • T. Grégoire
  • R. Gracia Ruiz
  • K. Graf
  • S. Hallmann
  • H. van Haren
  • A. J. Heijboer
  • Y. Hello
  • J. J. Hernández-Rey
  • J. Hößl
  • J. Hofestädt
  • G. Illuminati
  • C. W. James
  • M. de Jong
  • M. Jongen
  • M. Kadler
  • O. Kalekin
  • U. Katz
  • N. R. Khan-Chowdhury
  • A. Kouchner
  • M. Kreter
  • I. Kreykenbohm
  • V. Kulikovskiy
  • C. Lachaud
  • R. Lahmann
  • R. Le Breton
  • D. Lefèvre
  • E. Leonora
  • G. Levi
  • M. Lincetto
  • M. Lotze
  • S. Loucatos
  • G. Maggi
  • M. Marcelin
  • A. Margiotta
  • A. Marinelli
  • J. A. Martínez-Mora
  • R. Mele
  • K. Melis
  • P. Migliozzi
  • A. Moussa
  • S. Navas
  • E. Nezri
  • C. Nielsen
  • A. Nuñez
  • M. Organokov
  • G. E. Păvălas
  • C. Pellegrino
  • M. Perrin-Terrin
  • P. Piattelli
  • V. Popa
  • T. Pradier
  • L. Quinn
  • C. Racca
  • N. Randazzo
  • G. Riccobene
  • A. Sánchez-Losa
  • A. Salah-Eddine
  • I. SalvadoriEmail author
  • D. F. E. Samtleben
  • M. Sanguineti
  • P. Sapienza
  • F. Schüssler
  • M. Spurio
  • Th. Stolarczyk
  • M. Taiuti
  • Y. Tayalati
  • T. Thakore
  • A. Trovato
  • B. Vallage
  • V. Van Elewyck
  • F. Versari
  • S. Viola
  • D. Vivolo
  • J. Wilms
  • D. Zaborov
  • J. D. Zornoza
  • J. Zúñiga
Open Access
Regular Article - Experimental Physics

Abstract

The ANTARES neutrino telescope has an energy threshold of a few tens of GeV. This allows to study the phenomenon of atmospheric muon neutrino disappearance due to neutrino oscillations. In a similar way, constraints on the 3+1 neutrino model, which foresees the existence of one sterile neutrino, can be inferred. Using data collected by the ANTARES neutrino telescope from 2007 to 2016, a new measurement of Δm 32 2 and θ23 has been performed — which is consistent with world best-fit values — and constraints on the 3+1 neutrino model have been derived.

Keywords

Neutrino Detectors and Telescopes (experiments) Oscillation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  3. [3]
    V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].
  4. [4]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  5. [5]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].
  6. [6]
    S.P. Mikheyev and A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].Google Scholar
  7. [7]
    S.P. Mikheev and A.Y. Smirnov, Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, Nuovo Cim. C 9 (1986) 17 [INSPIRE].
  8. [8]
  9. [9]
    ANTARES collaboration, ANTARES: the first undersea neutrino telescope, Nucl. Instrum. Meth. A 656 (2011) 11 [arXiv:1104.1607] [INSPIRE].
  10. [10]
    ANTARES collaboration, Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope, Phys. Lett. B 714 (2012) 224 [arXiv:1206.0645] [INSPIRE].
  11. [11]
    LSND collaboration, Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  12. [12]
    MiniBooNE and SciBooNE collaborations, Dual baseline search for muon antineutrino disappearance at 0.1 eV 2 < Δm 2 < 100 eV 2, Phys. Rev. D 86 (2012) 052009 [arXiv:1208.0322] [INSPIRE].
  13. [13]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  14. [14]
    MINOS+ collaboration, Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit, Phys. Rev. Lett. 122 (2019) 091803 [arXiv:1710.06488] [INSPIRE].
  15. [15]
    Super-Kamiokande collaboration, Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].
  16. [16]
    IceCube collaboration, Search for sterile neutrino mixing using three years of IceCube DeepCore data, Phys. Rev. D 95 (2017) 112002 [arXiv:1702.05160] [INSPIRE].
  17. [17]
    ANTARES collaboration, The ANTARES optical module, Nucl. Instrum. Meth. A 484 (2002) 369 [astro-ph/0112172] [INSPIRE].
  18. [18]
    ANTARES collaboration, Performance of the front-end electronics of the ANTARES neutrino telescope, Nucl. Instrum. Meth. A 622 (2010) 59 [arXiv:1007.2549] [INSPIRE].
  19. [19]
    ANTARES collaboration, The data acquisition system for the ANTARES neutrino telescope, Nucl. Instrum. Meth. A 570 (2007) 107 [astro-ph/0610029] [INSPIRE].
  20. [20]
    B. Bakker, Trigger studies for the Antares and KM3NeT neutrino telescopes, Master’s Thesis, University of Amsterdam (2011).Google Scholar
  21. [21]
    ANTARES collaboration, The Run-by-Run Monte Carlo simulation for the ANTARES experiment, EPJ Web Conf. 116 (2016) 02002 [INSPIRE].
  22. [22]
    ANTARES collaboration, Long-term monitoring of the ANTARES optical module efficiencies using 40K decays in sea water, Eur. Phys. J. C 78 (2018) 669 [arXiv:1805.08675] [INSPIRE].
  23. [23]
    D. Bailey, Monte Carlo tools and analysis methods for understanding the ANTARES experiment and predicting its sensitivity to dark matter, Ph.D. Thesis, Oxford University (2002).Google Scholar
  24. [24]
    M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara and S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model, Phys. Rev. D 92 (2015) 023004 [arXiv:1502.03916] [INSPIRE].
  25. [25]
    G. Carminati, M. Bazzotti, A. Margiotta and M. Spurio, Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE), Comput. Phys. Commun. 179 (2008) 915 [arXiv:0802.0562] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Application Software Group collaboration, GEANT 3: a detector description and simulation tool, CERN Program Library Long Writeup W5013 (1995).Google Scholar
  27. [27]
    ANTARES collaboration, A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope, Astropart. Phys. 34 (2011) 652 [arXiv:1105.4116] [INSPIRE].
  28. [28]
    E. Visser, Neutrinos from the Milky Way, Ph.D. Thesis, Universiteit Leiden (2015).Google Scholar
  29. [29]
    C. Patrignani et al., The review of particle physics, Chin. Phys. C 40 (2016) 100001.Google Scholar
  30. [30]
    G.D. Barr, T.K. Gaisser, S. Robbins and T. Stanev, Uncertainties in atmospheric neutrino fluxes, Phys. Rev. D 74 (2006) 094009 [astro-ph/0611266] [INSPIRE].
  31. [31]
    IceCube collaboration, Measurement of atmospheric neutrino oscillations at 6-56 GeV with IceCube DeepCore, Phys. Rev. Lett. 120 (2018) 071801 [arXiv:1707.07081] [INSPIRE].
  32. [32]
    ANTARES and KM3NeT collaborations, gSeaGen: a GENIE-based code for neutrino telescopes, EPJ Web Conf. 116 (2016) 08001 [arXiv:1602.00501] [INSPIRE].
  33. [33]
    C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator: physics and user manual, arXiv:1510.05494 [INSPIRE].
  34. [34]
    F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Neutrino masses and mixings: status of known and unknownparameters, Nucl. Phys. B 908 (2016) 218 [arXiv:1601.07777] [INSPIRE].
  35. [35]
    ANTARES collaboration, Transmission of light in deep sea water at the site of the ANTARES neutrino telescope, Astropart. Phys. 23 (2005) 131 [astro-ph/0412126] [INSPIRE].
  36. [36]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Signatures of a light sterile neutrino in T2HK, JHEP 04 (2018) 091 [arXiv:1801.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].
  38. [38]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018:hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].
  39. [39]
    Super-Kamiokande collaboration, Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, Phys. Rev. D 97 (2018) 072001 [arXiv:1710.09126] [INSPIRE].
  40. [40]
    M. Sanchez, NOvA results and prospects,  https://doi.org/10.5281/zenodo.1286758 (2018).
  41. [41]
    M. Wascko, T2K status, results, and plans,  https://doi.org/10.5281/zenodo.1286752 (2018).
  42. [42]
    A. Aurisano, Recent results from MINOS and MINOS+,  https://doi.org/10.5281/zenodo.1286760 (2018).
  43. [43]
    M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, Phys. Rev. D 76 (2007) 093005 [arXiv:0705.0107] [INSPIRE].
  44. [44]
    S. Razzaque and A.Y. Smirnov, Searches for sterile neutrinos with IceCube DeepCore, Phys. Rev. D 85 (2012) 093010 [arXiv:1203.5406] [INSPIRE].
  45. [45]
    M. Blennow, E. Fernandez-Martinez, J. Gehrlein, J. Hernandez-Garcia and J. Salvado, IceCube bounds on sterile neutrinos above 10 eV, Eur. Phys. J. C 78 (2018) 807 [arXiv:1803.02362] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • The ANTARES collaboration
  • A. Albert
    • 1
  • M. André
    • 2
  • M. Anghinolfi
    • 3
  • G. Anton
    • 4
  • M. Ardid
    • 5
  • J.-J. Aubert
    • 6
  • J. Aublin
    • 7
  • T. Avgitas
    • 7
  • B. Baret
    • 7
  • J. Barrios-Martí
    • 8
  • S. Basa
    • 9
  • B. Belhorma
    • 10
  • V. Bertin
    • 6
  • S. Biagi
    • 11
  • R. Bormuth
    • 12
    • 13
  • J. Boumaaza
    • 14
  • S. Bourret
    • 7
  • M. C. Bouwhuis
    • 12
  • H. Brânzas
    • 15
  • R. Bruijn
    • 12
    • 16
  • J. Brunner
    • 6
  • J. Busto
    • 6
  • A. Capone
    • 17
    • 18
  • L. Caramete
    • 15
  • J. Carr
    • 6
  • S. Celli
    • 17
    • 18
    • 19
  • M. Chabab
    • 20
  • R. Cherkaoui El Moursli
    • 14
  • T. Chiarusi
    • 21
  • M. Circella
    • 22
  • A. Coleiro
    • 8
    • 7
  • M. Colomer
    • 7
    • 8
  • R. Coniglione
    • 11
  • H. Costantini
    • 6
  • P. Coyle
    • 6
  • A. Creusot
    • 7
  • A. F. Díaz
    • 23
  • A. Deschamps
    • 24
  • C. Distefano
    • 11
  • I. Di Palma
    • 17
    • 18
  • A. Domi
    • 3
    • 25
  • R. Donà
    • 21
  • C. Donzaud
    • 7
    • 26
  • D. Dornic
    • 6
  • D. Drouhin
    • 1
  • T. Eberl
    • 4
  • I. El Bojaddaini
    • 27
  • N. El Khayati
    • 14
  • D. Elsässer
    • 28
  • A. Enzenhöfer
    • 4
    • 6
  • A. Ettahiri
    • 14
  • F. Fassi
    • 14
  • P. Fermani
    • 17
    • 18
  • G. Ferrara
    • 11
  • L. Fusco
    • 7
    • 29
  • P. Gay
    • 30
    • 7
  • H. Glotin
    • 31
  • R. Gozzini
    • 8
  • T. Grégoire
    • 7
  • R. Gracia Ruiz
    • 1
  • K. Graf
    • 4
  • S. Hallmann
    • 4
  • H. van Haren
    • 32
  • A. J. Heijboer
    • 12
  • Y. Hello
    • 24
  • J. J. Hernández-Rey
    • 8
  • J. Hößl
    • 4
  • J. Hofestädt
    • 4
  • G. Illuminati
    • 8
  • C. W. James
    • 33
    • 34
  • M. de Jong
    • 12
    • 13
  • M. Jongen
    • 12
  • M. Kadler
    • 28
  • O. Kalekin
    • 4
  • U. Katz
    • 4
  • N. R. Khan-Chowdhury
    • 8
  • A. Kouchner
    • 7
    • 35
  • M. Kreter
    • 28
  • I. Kreykenbohm
    • 36
  • V. Kulikovskiy
    • 3
    • 37
  • C. Lachaud
    • 7
  • R. Lahmann
    • 4
  • R. Le Breton
    • 7
  • D. Lefèvre
    • 38
    • 39
  • E. Leonora
    • 40
  • G. Levi
    • 21
    • 29
  • M. Lincetto
    • 6
  • M. Lotze
    • 8
  • S. Loucatos
    • 41
    • 7
  • G. Maggi
    • 6
  • M. Marcelin
    • 9
  • A. Margiotta
    • 21
    • 29
  • A. Marinelli
    • 42
    • 43
  • J. A. Martínez-Mora
    • 5
  • R. Mele
    • 44
    • 45
  • K. Melis
    • 12
    • 16
  • P. Migliozzi
    • 44
  • A. Moussa
    • 27
  • S. Navas
    • 46
  • E. Nezri
    • 9
  • C. Nielsen
    • 7
  • A. Nuñez
    • 6
    • 9
  • M. Organokov
    • 1
  • G. E. Păvălas
    • 15
  • C. Pellegrino
    • 21
    • 29
  • M. Perrin-Terrin
    • 6
  • P. Piattelli
    • 11
  • V. Popa
    • 15
  • T. Pradier
    • 1
  • L. Quinn
    • 6
  • C. Racca
    • 47
  • N. Randazzo
    • 40
  • G. Riccobene
    • 11
  • A. Sánchez-Losa
    • 22
  • A. Salah-Eddine
    • 20
  • I. Salvadori
    • 6
    Email author
  • D. F. E. Samtleben
    • 12
    • 13
  • M. Sanguineti
    • 3
    • 25
  • P. Sapienza
    • 11
  • F. Schüssler
    • 41
  • M. Spurio
    • 21
    • 29
  • Th. Stolarczyk
    • 41
  • M. Taiuti
    • 3
    • 25
  • Y. Tayalati
    • 14
  • T. Thakore
    • 8
  • A. Trovato
    • 11
  • B. Vallage
    • 41
    • 7
  • V. Van Elewyck
    • 7
    • 35
  • F. Versari
    • 21
    • 29
  • S. Viola
    • 11
  • D. Vivolo
    • 44
    • 45
  • J. Wilms
    • 36
  • D. Zaborov
    • 6
  • J. D. Zornoza
    • 8
  • J. Zúñiga
    • 8
  1. 1.Université de Strasbourg, CNRS, IPHC UMR 7178StrasbourgFrance
  2. 2.Technical University of Catalonia, Laboratory of Applied BioacousticsVilanova i la GeltrúSpain
  3. 3.INFN — Sezione di GenovaGenovaItaly
  4. 4.Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle PhysicsErlangenGermany
  5. 5.Institut d’Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC)Universitat Politècnica de ValènciaGandiaSpain
  6. 6.Aix Marseille University, CNRS/IN2P3, CPPMMarseilleFrance
  7. 7.APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de ParisSorbonne Paris CitéFrance
  8. 8.IFIC — Instituto de Física Corpuscular (CSIC — Universitat de València)Paterna, ValenciaSpain
  9. 9.LAM — Laboratoire d’Astrophysique de Marseille, Pôle de l’ Étoile Site de Château-GombertMarseille Cedex 13France
  10. 10.National Center for Energy Sciences and Nuclear TechniquesRabatMorocco
  11. 11.INFN — Laboratori Nazionali del Sud (LNS)CataniaItaly
  12. 12.Nikhef, Science ParkAmsterdamThe Netherlands
  13. 13.Huygens-Kamerlingh Onnes LaboratoriumUniversiteit LeidenLeidenThe Netherlands
  14. 14.University Mohammed V in Rabat, Faculty of SciencesRabatMorocco
  15. 15.Institute of Space ScienceBucharestRomania
  16. 16.Universiteit van Amsterdam, Instituut voor Hoge-Energie FysicaAmsterdamThe Netherlands
  17. 17.INFN — Sezione di RomaRomaItaly
  18. 18.Dipartimento di Fisica dell’Università La SapienzaRomaItaly
  19. 19.Gran Sasso Science InstituteL’AquilaItaly
  20. 20.LPHEA, Faculty of Science — SemlaliCadi Ayyad UniversityMarrakechMorocco
  21. 21.INFN — Sezione di BolognaBolognaItaly
  22. 22.INFN — Sezione di BariBariItaly
  23. 23.Department of Computer Architecture and Technology/CITICUniversity of GranadaGranadaSpain
  24. 24.Géoazur, UCA, CNRS, IRD, Observatoire de la Côte d’AzurSophia AntipolisFrance
  25. 25.Dipartimento di Fisica dell’UniversitàGenovaItaly
  26. 26.Université Paris-SudOrsay CedexFrance
  27. 27.University Mohammed I, Laboratory of Physics of Matter and RadiationsOujdaMorocco
  28. 28.Institut für Theoretische Physik und AstrophysikUniversität WürzburgWürzburgGermany
  29. 29.Dipartimento di Fisica e Astronomia dell’UniversitàBolognaItaly
  30. 30.Laboratoire de Physique CorpusculaireClermont Université, Université Blaise Pascal, CNRS/IN2P3Clermont-FerrandFrance
  31. 31.LIS, UMR Université de Toulon, Aix Marseille Université, CNRSToulonFrance
  32. 32.Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University’t Horntje (Texel)The Netherlands
  33. 33.International Centre for Radio Astronomy Research — Curtin UniversityBentleyAustralia
  34. 34.ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)SydneyAustralia
  35. 35.Institut Universitaire de FranceParisFrance
  36. 36.Dr. Remeis-Sternwarte and ECAP, Friedrich-Alexander-Universität Erlangen-NürnbergBambergGermany
  37. 37.Moscow State University, Skobeltsyn Institute of Nuclear PhysicsMoscowRussia
  38. 38.Mediterranean Institute of Oceanography (MIO)Aix-Marseille UniversityMarseille, Cedex 9France
  39. 39.Université du Sud Toulon-Var, CNRS-INSU/IRD UM 110La Garde CedexFrance
  40. 40.INFN — Sezione di CataniaCataniaItaly
  41. 41.IRFU, CEA, Université Paris-SaclayGif-sur-YvetteFrance
  42. 42.INFN — Sezione di PisaPisaItaly
  43. 43.Dipartimento di Fisica dell’UniversitàPisaItaly
  44. 44.INFN — Sezione di NapoliNapoliItaly
  45. 45.Dipartimento di Fisica dell’Università Federico II di NapoliNapoliItaly
  46. 46.Departamento de Física Teórica y del Cosmos & C. A. F. P. E.University of GranadaGranadaSpain
  47. 47.GRPHE — Université de Haute Alsace — Institut Universitaire de Technologie de ColmarColmarFrance

Personalised recommendations