Advertisement

Euclidean wormholes and holography

  • P. BetziosEmail author
  • E. Kiritsis
  • O. Papadoulaki
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

Asymptotically AdS wormhole solutions are considered in the context of holography. Correlation functions of local operators on distinct boundaries are studied. It is found that such correlators are finite at short distances. Correlation functions of non-local operators (Wilson loops) on distinct boundaries are also studied, with similar conclusions. Deformations of the theory with multi-trace operators on distinct boundaries are considered and studied. As a consequence of these results, the dual theory is expected to factorize in the UV, and the two sectors to be coupled by a soft non-local interaction. A simple field theory model with such behavior is presented.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Gao, D.L. Jafferis and A. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    R. van Breukelen and K. Papadodimas, Quantum teleportation through time-shifted AdS wormholes, JHEP 08 (2018) 142 [arXiv:1708.09370] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S.R. Coleman, Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence, Nucl. Phys. B 307 (1988) 867 [INSPIRE].
  6. [6]
    G.V. Lavrelashvili, V.A. Rubakov and P.G. Tinyakov, Disruption of Quantum Coherence upon a Change in Spatial Topology in Quantum Gravity, JETP Lett. 46 (1987) 167 [INSPIRE].ADSGoogle Scholar
  7. [7]
    S.B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].
  8. [8]
    D.H. Coule and K.-i. Maeda, Wormholes With Scalar Fields, Class. Quant. Grav. 7 (1990) 955 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J.J. Halliwell and R. Laflamme, Conformal scalar field wormholes, Class. Quant. Grav. 6 (1989) 1839 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Hosoya and W. Ogura, Wormhole Instanton Solution in the Einstein Yang-Mills System, Phys. Lett. B 225 (1989) 117 [INSPIRE].
  11. [11]
    V. de Alfaro, S. Fubini and G. Furlan, A New Classical Solution of the Yang-Mills Field Equations, Phys. Lett. 65B (1976) 163 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    C.G. Callan Jr., R.F. Dashen and D.J. Gross, Toward a Theory of the Strong Interactions, Phys. Rev. D 17 (1978) 2717 [INSPIRE].
  13. [13]
    S.B. Giddings and A. Strominger, Axion Induced Topology Change in Quantum Gravity and String Theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].
  14. [14]
    P. Betzios, N. Gaddam and O. Papadoulaki, Antipodal correlation on the meron wormhole and a bang-crunch universe, Phys. Rev. D 97 (2018) 126006 [arXiv:1711.03469] [INSPIRE].
  15. [15]
    S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, From big bang to big crunch and beyond, JHEP 06 (2002) 017 [hep-th/0204189] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P. Betzios, U. Gürsoy and O. Papadoulaki, Matrix Quantum Mechanics on S 1 /Z2, Nucl. Phys. B 928 (2018) 356 [arXiv:1612.04792] [INSPIRE].
  17. [17]
    J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S.-J. Rey, Holographic principle and topology change in string theory, Class. Quant. Grav. 16 (1999) L37 [hep-th/9807241] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N. Arkani-Hamed, J. Orgera and J. Polchinski, Euclidean wormholes in string theory, JHEP 12 (2007) 018 [arXiv:0705.2768] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    K. Skenderis and B.C. van Rees, Holography and wormholes in 2+1 dimensions, Commun. Math. Phys. 301 (2011) 583 [arXiv:0912.2090] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    T. Hertog, B. Truijen and T. Van Riet, Euclidean axion wormholes have multiple negative modes, arXiv:1811.12690 [INSPIRE].
  22. [22]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
  24. [24]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  25. [25]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].
  26. [26]
    M.J. Strassler, The Duality cascade, in Progress in string theory. Proceedings, Summer School, TASI 2003, Boulder, U.S.A., June 2-27, 2003, pp. 419-510 (2005) [ https://doi.org/10.1142/9789812775108_0005] [hep-th/0505153] [INSPIRE].
  27. [27]
    O. Aharony, A. Hashimoto, S. Hirano and P. Ouyang, D-brane Charges in Gravitational Duals of 2+1 Dimensional Gauge Theories and Duality Cascades, JHEP 01 (2010) 072 [arXiv:0906.2390] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
  29. [29]
    G.V. Dunne and K. Rao, Lame instantons, JHEP 01 (2000) 019 [hep-th/9906113] [INSPIRE].
  30. [30]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    A.K. Gupta, J. Hughes, J. Preskill and M.B. Wise, Magnetic Wormholes and Topological Symmetry, Nucl. Phys. B 333 (1990) 195 [INSPIRE].
  32. [32]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    C. Bachas and I. Lavdas, Quantum Gates to other Universes, Fortsch. Phys. 66 (2018) 1700096 [arXiv:1711.11372] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    G. Basar, G.V. Dunne and M. Ünsal, Resurgence theory, ghost-instantons and analytic continuation of path integrals, JHEP 10 (2013) 041 [arXiv:1308.1108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    K. Osterwalder and R. Schrader, Axioms for euclidean Greens functions, Commun. Math. Phys. 31 (1973) 83 [INSPIRE].
  36. [36]
    P.M. Morse and N. Rosen, On the vibrations of polyatomic molecules, Phys. Rev. 42 (1932) 210.ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Jeffrey and D. Zwillinger eds., Table of integrals, series, and products, Elsevier (2007).Google Scholar
  38. [38]
    P. Sarnak, Spectra of hyperbolic surfaces, Bull. Am. Math. Soc. 40 (2003) 441.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    J.K. Ghosh, E. Kiritsis, F. Nitti and L.T. Witkowski, Holographic RG flows on curved manifolds and quantum phase transitions, JHEP 05 (2018) 034 [arXiv:1711.08462] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    J.K. Ghosh, E. Kiritsis, F. Nitti and L.T. Witkowski, de Sitter and Anti-de Sitter branes in self-tuning models, JHEP 11 (2018) 128 [arXiv:1807.09794] [INSPIRE].
  41. [41]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  42. [42]
    T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    A. Hebecker, T. Mikhail and P. Soler, Euclidean wormholes, baby universes and their impact on particle physics and cosmology, Front. Astron. Space Sci. 5 (2018) 35 [arXiv:1807.00824] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S.R. Coleman, J.B. Hartle, T. Piran and S. Weinberg eds., Quantum cosmology and baby universes, Proceedings, 7th Winter School for Theoretical Physics, Jerusalem, Israel, December 27, 1989 - January 4, 1990 (1991).Google Scholar
  45. [45]
    S.W. Hawking, Wormholes in Space-Time, Phys. Rev. D 37 (1988) 904 [INSPIRE].
  46. [46]
    T. Hertog, M. Trigiante and T. Van Riet, Axion Wormholes in AdS Compactifications, JHEP 06 (2017) 067 [arXiv:1702.04622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    S.-J. Rey, Space-time Wormholes With Yang-Mills Fields, Nucl. Phys. B 336 (1990) 146 [INSPIRE].
  48. [48]
    C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. 126B (1983) 41 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    D. Cangemi and R. Jackiw, Gauge invariant formulations of lineal gravity, Phys. Rev. Lett. 69 (1992) 233 [hep-th/9203056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  51. [51]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  52. [52]
    I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS 2 gravity, arXiv:1707.02325 [INSPIRE].
  53. [53]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
  54. [54]
    D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].
  55. [55]
    D.J. Gross and H. Ooguri, Aspects of large N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [INSPIRE].
  56. [56]
    K. Zarembo, Wilson loop correlator in the AdS/CFT correspondence, Phys. Lett. B 459 (1999) 527 [hep-th/9904149] [INSPIRE].
  57. [57]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  58. [58]
    E. Kiritsis and V. Niarchos, Interacting String Multi-verses and Holographic Instabilities of Massive Gravity, Nucl. Phys. B 812 (2009) 488 [arXiv:0808.3410] [INSPIRE].
  59. [59]
    E. Kiritsis and V. Niarchos, (Multi)Matrix Models and Interacting Clones of Liouville Gravity, JHEP 08 (2008) 044 [arXiv:0805.4234] [INSPIRE].
  60. [60]
    E. Kiritsis, Product CFTs, gravitational cloning, massive gravitons and the space of gravitational duals, JHEP 11 (2006) 049 [hep-th/0608088] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    O. Aharony, A.B. Clark and A. Karch, The CFT/AdS correspondence, massive gravitons and a connectivity index conjecture, Phys. Rev. D 74 (2006) 086006 [hep-th/0608089] [INSPIRE].
  62. [62]
    P. Anastasopoulos, P. Betzios, M. Bianchi, D. Consoli and E. Kiritsis, Emergent/Composite axions, arXiv:1811.05940 [INSPIRE].
  63. [63]
    E. Witten, A Note On Boundary Conditions In Euclidean Gravity, arXiv:1805.11559 [INSPIRE].
  64. [64]
    G.W. Semenoff and K. Zarembo, More exact predictions of SUSYM for string theory, Nucl. Phys. B 616 (2001) 34 [hep-th/0106015] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Crete Center for Theoretical Physics, Institute for Theoretical and Computational Physics, Department of PhysicsUniversity of CreteHeraklionGreece
  2. 2.APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris CitéParis Cedex 13France
  3. 3.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations