Advertisement

High-temperature domain walls of QCD with imaginary chemical potentials

  • Hiromichi Nishimura
  • Yuya TanizakiEmail author
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

We study QCD with massless quarks on ℝ3 × S1 under symmetry-twisted boundary conditions with small compactification radius, i.e. at high temperatures. Under suitable boundary conditions, the theory acquires a part of the center symmetry and it is spontaneously broken at high temperatures. We show that these vacua at high temperatures can be regarded as different symmetry-protected topological orders, and the domain walls between them support nontrivial massless gauge theories as a consequence of anomaly-inflow mechanism. At sufficiently high temperatures, we can perform the semi-classical analysis to obtain the domain-wall theory, and 2d U(Nc − 1) gauge theories with massless fermions match the ’t Hooft anomaly. We perform these analysis for the high-temperature domain wall of \( {\mathbb{Z}}_{N_{\mathrm{c}}} \)-QCD and also of Roberge-Weiss phase transitions.

Keywords

Anomalies in Field and String Theories Nonperturbative Effects Phase Diagram of QCD Topological States of Matter 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].
  2. [2]
    G. ’t Hooft, A property of electric and magnetic flux in non-Abelian gauge theories, Nucl. Phys. B 153 (1979) 141 [INSPIRE].
  3. [3]
    G. ’t Hooft, Topology of the gauge condition and new confinement phases in non-Abelian gauge theories, Nucl. Phys. B 190 (1981) 455 [INSPIRE].
  4. [4]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613] [INSPIRE].
  6. [6]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    X. Chen, Z.C. Gu and X.G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order, Phys. Rev. B 82 (2010) 155138 [arXiv:1004.3835] [INSPIRE].
  8. [8]
    Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. 1, Phys. Rev. 122 (1961) 345 [INSPIRE].
  9. [9]
    Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. 2, Phys. Rev. 124 (1961) 246 [INSPIRE].
  10. [10]
    M. Creutz, Monte Carlo study of quantized SU(2) gauge theory, Phys. Rev. D 21 (1980) 2308 [INSPIRE].
  11. [11]
    G. ’t Hooft, Naturalness, chiral symmetry and spontaneous chiral symmetry breaking, in Recent Developments in Gauge Theories. Proceedings, Nato Advanced Study Institute, Cargese, France, 26 August-8 September 1979, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].
  12. [12]
    Y. Frishman, A. Schwimmer, T. Banks and S. Yankielowicz, The axial anomaly and the bound state spectrum in confining theories, Nucl. Phys. B 177 (1981) 157 [INSPIRE].
  13. [13]
    S.R. Coleman and B. Grossman, ’t Hoofts consistency condition as a consequence of analyticity and unitarity, Nucl. Phys. B 203 (1982) 205 [INSPIRE].
  14. [14]
    A. Vishwanath and T. Senthil, Physics of three dimensional bosonic topological insulators: surface deconfined criticality and quantized magnetoelectric effect, Phys. Rev. X 3 (2013) 011016 [arXiv:1209.3058] [INSPIRE].
  15. [15]
    X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88 (2013) 045013 [arXiv:1303.1803] [INSPIRE].
  16. [16]
    G.Y. Cho, J.C.Y. Teo and S. Ryu, Conflicting symmetries in topologically ordered surface states of three-dimensional bosonic symmetry protected topological phases, Phys. Rev. B 89 (2014) 235103 [arXiv:1403.2018] [INSPIRE].
  17. [17]
    A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in three dimensions and group cohomology, Phys. Rev. Lett. 112 (2014) 231602 [arXiv:1403.0617] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv:1404.3230 [INSPIRE].
  19. [19]
    J.C. Wang, Z.-C. Gu and X.-G. Wen, Field theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology and beyond, Phys. Rev. Lett. 114 (2015) 031601 [arXiv:1405.7689] [INSPIRE].
  20. [20]
    E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].
  21. [21]
    N. Seiberg and E. Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP 2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].
  22. [22]
    E. Witten, Theparityanomaly on an unorientable manifold, Phys. Rev. B 94 (2016) 195150 [arXiv:1605.02391] [INSPIRE].
  23. [23]
    Y. Tachikawa and K. Yonekura, On time-reversal anomaly of 2 + 1d topological phases, PTEP 2017 (2017) 033B04 [arXiv:1610.07010] [INSPIRE].
  24. [24]
    Y. Tachikawa and K. Yonekura, More on time-reversal anomaly of 2 + 1d topological phases, Phys. Rev. Lett. 119 (2017) 111603 [arXiv:1611.01601] [INSPIRE].
  25. [25]
    D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal and temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    C. Wang, A. Nahum, M.A. Metlitski, C. Xu and T. Senthil, Deconfined quantum critical points: symmetries and dualities, Phys. Rev. X 7 (2017) 031051 [arXiv:1703.02426] [INSPIRE].
  27. [27]
    Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite topological angles, JHEP 06 (2017) 102 [arXiv:1705.01949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on Abelian Higgs models and persistent order, SciPost Phys. 6 (2019) 003 [arXiv:1705.04786] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies and deconfinement in quantum antiferromagnets, Phys. Rev. B 97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].
  30. [30]
    G.Y. Cho, S. Ryu and C.-T. Hsieh, Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases, Phys. Rev. B 96 (2017) 195105 [arXiv:1705.03892] [INSPIRE].
  31. [31]
    H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase transition, Phys. Rev. D 97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].
  32. [32]
    J. Wang, X.-G. Wen and E. Witten, Symmetric gapped interfaces of SPT and SET states: systematic constructions, Phys. Rev. X 8 (2018) 031048 [arXiv:1705.06728] [INSPIRE].
  33. [33]
    Y. Kikuchi and Y. Tanizaki, Global inconsistency,t Hooft anomaly and level crossing in quantum mechanics, PTEP 2017 (2017) 113B05 [arXiv:1708.01962] [INSPIRE].
  34. [34]
    D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD 4 , walls and dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].
  35. [35]
    J. Gomis, Z. Komargodski and N. Seiberg, Phases of adjoint QCD 3 and dualities, SciPost Phys. 5 (2018) 007 [arXiv:1710.03258] [INSPIRE].
  36. [36]
    Y. Tanizaki, T. Misumi and N. Sakai, Circle compactification andt Hooft anomaly, JHEP 12 (2017) 056 [arXiv:1710.08923] [INSPIRE].
  37. [37]
    Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram of masslessN -QCD, Phys. Rev. D 97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].
  38. [38]
    A. Cherman and M. Ünsal, Critical behavior of gauge theories and Coulomb gases in three and four dimensions, arXiv:1711.10567 [INSPIRE].
  39. [39]
    M. Yamazaki, Relatingt Hooft anomalies of 4d pure Yang-Mills and 2d ℂN − 1 model, JHEP 10 (2018) 172 [arXiv:1711.04360] [INSPIRE].
  40. [40]
    M. Guo, P. Putrov and J. Wang, Time reversal, SU(N) Yang-Mills and cobordisms: interacting topological superconductors/insulators and quantum spin liquids in 3 + 1D, Annals Phys. 394 (2018) 244 [arXiv:1711.11587] [INSPIRE].
  41. [41]
    G.V. Dunne, Y. Tanizaki and M. Ünsal, Quantum distillation of Hilbert spaces, semi-classics and anomaly matching, JHEP 08 (2018) 068 [arXiv:1803.02430] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    T. Sulejmanpasic and Y. Tanizaki, C-P-T anomaly matching in bosonic quantum field theory and spin chains, Phys. Rev. B 97 (2018) 144201 [arXiv:1802.02153] [INSPIRE].
  43. [43]
    C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries, JHEP 02 (2019) 184 [arXiv:1802.04790] [INSPIRE].
  44. [44]
    K. Aitken, A. Cherman and M. Ünsal, Dihedral symmetry in SU(N ) Yang-Mills theory, arXiv:1804.05845 [INSPIRE].
  45. [45]
    R. Kobayashi, K. Shiozaki, Y. Kikuchi and S. Ryu, Lieb-Schultz-Mattis type theorem with higher-form symmetry and the quantum dimer models, Phys. Rev. B 99 (2019) 014402 [arXiv:1805.05367] [INSPIRE].
  46. [46]
    Y. Tanizaki and T. Sulejmanpasic, Anomaly and global inconsistency matching: θ-angles, SU(3)/U(1)2 nonlinear σ-model, SU(3) chains and its generalizations, Phys. Rev. B 98 (2018) 115126 [arXiv:1805.11423] [INSPIRE].
  47. [47]
    C. Córdova and T.T. Dumitrescu, Candidate phases for SU(2) adjoint QCD 4 with two flavors from N = 2 supersymmetric Yang-Mills theory, arXiv:1806.09592 [INSPIRE].
  48. [48]
    M.M. Anber and E. Poppitz, Two-flavor adjoint QCD, Phys. Rev. D 98 (2018) 034026 [arXiv:1805.12290] [INSPIRE].
  49. [49]
    M.M. Anber and E. Poppitz, Anomaly matching, (axial) Schwinger models and high-T super Yang-Mills domain walls, JHEP 09 (2018) 076 [arXiv:1807.00093] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    Y. Tanizaki, Anomaly constraint on massless QCD and the role of Skyrmions in chiral symmetry breaking, JHEP 08 (2018) 171 [arXiv:1807.07666] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    K. Ohmori, N. Seiberg and S.-H. Shao, σ-models on flags, SciPost Phys. 6 (2019) 017 [arXiv:1809.10604] [INSPIRE].
  52. [52]
    M. Hongo, T. Misumi and Y. Tanizaki, Phase structure of the twisted SU(3)/U(1)2 flag σ-model on ℝ × S 1, JHEP 02 (2019) 070 [arXiv:1812.02259] [INSPIRE].
  53. [53]
    A. Armoni and S. Sugimoto, Vacuum structure of charge k two-dimensional QED and dynamics of an anti D-string near an O1-plane, JHEP 03 (2019) 175 [arXiv:1812.10064] [INSPIRE].
  54. [54]
    K. Yonekura, Anomaly matching in QCD thermal phase transition, JHEP 05 (2019) 062 [arXiv:1901.08188] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Roberge and N. Weiss, Gauge theories with imaginary chemical potential and the phases of QCD, Nucl. Phys. B 275 (1986) 734 [INSPIRE].
  56. [56]
    M.G. Alford, A. Kapustin and F. Wilczek, Imaginary chemical potential and finite fermion density on the lattice, Phys. Rev. D 59 (1999) 054502 [hep-lat/9807039] [INSPIRE].
  57. [57]
    P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [INSPIRE].
  58. [58]
    P. de Forcrand and O. Philipsen, The QCD phase diagram for three degenerate flavors and small baryon density, Nucl. Phys. B 673 (2003) 170 [hep-lat/0307020] [INSPIRE].
  59. [59]
    M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [INSPIRE].
  60. [60]
    M. D’Elia and M.P. Lombardo, QCD thermodynamics from an imaginary μ B : results on the four flavor lattice model, Phys. Rev. D 70 (2004) 074509 [hep-lat/0406012] [INSPIRE].
  61. [61]
    K. Nagata and A. Nakamura, Imaginary chemical potential approach for the pseudo-critical line in the QCD phase diagram with clover-improved Wilson fermions, Phys. Rev. D 83 (2011) 114507 [arXiv:1104.2142] [INSPIRE].
  62. [62]
    K. Nagata, K. Kashiwa, A. Nakamura and S.M. Nishigaki, Lee-Yang zero distribution of high temperature QCD and the Roberge-Weiss phase transition, Phys. Rev. D 91 (2015) 094507 [arXiv:1410.0783] [INSPIRE].
  63. [63]
    C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen and F. Sanfilippo, Chiral phase transition in two-flavor QCD from an imaginary chemical potential, Phys. Rev. D 90 (2014) 074030 [arXiv:1408.5086] [INSPIRE].
  64. [64]
    C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro and F. Sanfilippo, Roberge-Weiss endpoint at the physical point of N f = 2 + 1 QCD, Phys. Rev. D 93 (2016) 074504 [arXiv:1602.01426] [INSPIRE].
  65. [65]
    C. Bonati et al., Roberge-Weiss endpoint and chiral symmetry restoration in N f = 2 + 1 QCD, Phys. Rev. D 99 (2019) 014502 [arXiv:1807.02106] [INSPIRE].
  66. [66]
    M.M. Anber and E. Poppitz, Domain walls in high-T SU(N ) super Yang-Mills theory and QCD(adj), JHEP 05 (2019) 151 [arXiv:1811.10642] [INSPIRE].
  67. [67]
    H. Kouno, Y. Sakai, T. Makiyama, K. Tokunaga, T. Sasaki and M. Yahiro, Quark-gluon thermodynamics with the \( {Z}_{N_c} \) symmetry, J. Phys. G 39 (2012) 085010 [INSPIRE].
  68. [68]
    Y. Sakai, H. Kouno, T. Sasaki and M. Yahiro, The quarkyonic phase and the \( {Z}_{N_c} \) symmetry, Phys. Lett. B 718 (2012) 130 [arXiv:1204.0228] [INSPIRE].
  69. [69]
    H. Kouno, T. Makiyama, T. Sasaki, Y. Sakai and M. Yahiro, Confinement and3 symmetry in three-flavor QCD, J. Phys. G 40 (2013) 095003 [arXiv:1301.4013] [INSPIRE].
  70. [70]
    H. Kouno, T. Misumi, K. Kashiwa, T. Makiyama, T. Sasaki and M. Yahiro, Differences and similarities between fundamental and adjoint matters in SU(N) gauge theories, Phys. Rev. D 88 (2013) 016002 [arXiv:1304.3274] [INSPIRE].
  71. [71]
    E. Poppitz and T. Sulejmanpasic, (S)QCD on \( {\mathbb{R}}^3 \times {\mathbb{S}}^1 \) : screening of Polyakov loop by fundamental quarks and the demise of semi-classics, JHEP 09 (2013) 128 [arXiv:1307.1317] [INSPIRE].
  72. [72]
    T. Iritani, E. Itou and T. Misumi, Lattice study on QCD-like theory with exact center symmetry, JHEP 11 (2015) 159 [arXiv:1508.07132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    H. Kouno, K. Kashiwa, J. Takahashi, T. Misumi and M. Yahiro, Understanding QCD at high density from a Z 3 -symmetric QCD-like theory, Phys. Rev. D 93 (2016) 056009 [arXiv:1504.07585] [INSPIRE].
  74. [74]
    T. Hirakida, H. Kouno, J. Takahashi and M. Yahiro, Interplay between sign problem and Z 3 symmetry in three-dimensional Potts models, Phys. Rev. D 94 (2016) 014011 [arXiv:1604.02977] [INSPIRE].
  75. [75]
    T. Hirakida, J. Sugano, H. Kouno, J. Takahashi and M. Yahiro, Sign problem in Z 3 -symmetric effective Polyakov-line model, Phys. Rev. D 96 (2017) 074031 [arXiv:1705.00665] [INSPIRE].
  76. [76]
    A. Cherman, S. Sen, M. Ünsal, M.L. Wagman and L.G. Yaffe, Order parameters and color-flavor center symmetry in QCD, Phys. Rev. Lett. 119 (2017) 222001 [arXiv:1706.05385] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    H. Reinhardt, Resolution of Gausslaw in Yang-Mills theory by gauge invariant projection: topology and magnetic monopoles, Nucl. Phys. B 503 (1997) 505 [hep-th/9702049] [INSPIRE].
  78. [78]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    N. Weiss, The effective potential for the order parameter of gauge theories at finite temperature, Phys. Rev. D 24 (1981) 475 [INSPIRE].
  80. [80]
    T. Bhattacharya, A. Gocksch, C. Korthals Altes and R.D. Pisarski, Z N interface tension in a hot SU(N) gauge theory, Nucl. Phys. B 383 (1992) 497 [hep-ph/9205231] [INSPIRE].
  81. [81]
    E.B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861] [INSPIRE].
  82. [82]
    M.K. Prasad and C.M. Sommerfield, An exact classical solution for thet Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].
  83. [83]
    M.M. Anber, E. Poppitz and T. Sulejmanpasic, Strings from domain walls in supersymmetric Yang-Mills theory and adjoint QCD, Phys. Rev. D 92 (2015) 021701 [arXiv:1501.06773] [INSPIRE].
  84. [84]
    T. Sulejmanpasic, H. Shao, A. Sandvik and M. Ünsal, Confinement in the bulk, deconfinement on the wall: infrared equivalence between compactified QCD and quantum magnets, Phys. Rev. Lett. 119 (2017) 091601 [arXiv:1608.09011] [INSPIRE].
  85. [85]
    C.G. Callan Jr. and J.A. Harvey, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.RIKEN BNL Research Center, Brookhaven National LaboratoryUptonU.S.A.
  2. 2.Department of PhysicsNorth Carolina State UniversityRaleighU.S.A.

Personalised recommendations