Advertisement

Final results of the search for νμνe oscillations with the OPERA detector in the CNGS beam

  • The OPERA collaboration
  • N. Agafonova
  • A. Aleksandrov
  • A. Anokhina
  • S. Aoki
  • A. Ariga
  • T. Ariga
  • A. Bertolin
  • C. Bozza
  • R. Brugnera
  • A. Buonaura
  • S. Buontempo
  • M. Chernyavskiy
  • A. Chukanov
  • L. Consiglio
  • N. D’Ambrosio
  • G. De Lellis
  • M. De Serio
  • P. del Amo Sanchez
  • A. Di Crescenzo
  • D. Di Ferdinando
  • N. Di Marco
  • S. Dmitrievsky
  • M. Dracos
  • D. Duchesneau
  • S. Dusini
  • T. Dzhatdoev
  • J. Ebert
  • A. Ereditato
  • J. Favier
  • R. A. Fini
  • F. Fornari
  • T. Fukuda
  • G. Galati
  • A. Garfagnini
  • V. Gentile
  • J. Goldberg
  • Y. Gornushkin
  • S. Gorbunov
  • G. Grella
  • A. M. Guler
  • C. Gustavino
  • C. Hagner
  • T. Hara
  • T. Hayakawa
  • A. Hollnagel
  • B. Hosseini
  • K. Ishiguro
  • A. Iuliano
  • K. Jakovcic
  • C. Jollet
  • C. Kamiscioglu
  • M. Kamiscioglu
  • S. H. Kim
  • N. Kitagawa
  • B. Klicek
  • K. Kodama
  • M. Komatsu
  • U. Kose
  • I. Kreslo
  • F. Laudisio
  • A. Lauria
  • A. Ljubicic
  • A. Longhin
  • P. Loverre
  • A. Malgin
  • M. Malenica
  • G. Mandrioli
  • T. Matsuo
  • V. Matveev
  • N. Mauri
  • E. Medinaceli
  • F. Meisel
  • A. Meregaglia
  • S. Mikado
  • M. Miyanishi
  • F. Mizutani
  • P. Monacelli
  • M. C. Montesi
  • K. Morishima
  • M. T. Muciaccia
  • N. Naganawa
  • T. Naka
  • M. Nakamura
  • T. Nakano
  • K. Niwa
  • N. Okateva
  • S. Ogawa
  • K. Ozaki
  • A. Paoloni
  • L. Paparella
  • B. D. Park
  • L. Pasqualini
  • A. Pastore
  • L. Patrizii
  • H. Pessard
  • D. Podgrudkov
  • N. Polukhina
  • M. Pozzato
  • F. Pupilli
  • M. Roda
  • T. Roganova
  • H. Rokujo
  • G. Rosa
  • O. Ryazhskaya
  • O. Sato
  • A. Schembri
  • I. Shakiryanova
  • T. Shchedrina
  • H. Shibuya
  • E. Shibayama
  • T. Shiraishi
  • S. Simone
  • C. Sirignano
  • G. Sirri
  • A. Sotnikov
  • M. Spinetti
  • L. Stanco
  • N. Starkov
  • S. M. Stellacci
  • M. Stipcevic
  • P. Strolin
  • S. Takahashi
  • M. TentiEmail author
  • F. Terranova
  • V. Tioukov
  • S. VasinaEmail author
  • P. Vilain
  • E. Voevodina
  • L. Votano
  • J. L. Vuilleumier
  • G. Wilquet
  • C. S. Yoon
Open Access
Regular Article - Experimental Physics
  • 131 Downloads

Abstract

The OPERA experiment has discovered the tau neutrino appearance in the CNGS muon neutrino beam, in agreement with the 3 neutrino flavour oscillation hypothesis. The OPERA neutrino interaction target, made of Emulsion Cloud Chambers, was particularly efficient in the reconstruction of electromagnetic showers. Moreover, thanks to the very high granularity of the emulsion films, showers induced by electrons can be distinguished from those induced by π0s, thus allowing the detection of charged current interactions of electron neutrinos. In this paper the results of the search for electron neutrino events using the full dataset are reported. An improved method for the electron neutrino energy estimation is exploited. Data are compatible with the 3 neutrino flavour mixing model expectations and are used to set limits on the oscillation parameters of the 3+1 neutrino mixing model, in which an additional mass eigenstate m4 is introduced. At high Δm 41 2 (≳0.1 eV2), an upper limit on sin2 2θμe is set to 0.021 at 90% C.L. and Δm 41 2  ≳ 4 × 10− 3 eV2 is excluded for maximal mixing in appearance mode.

Keywords

Neutrino Detectors and Telescopes (experiments) Oscillation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    OPERA collaboration, M. Guler at al., An appearance experiment to search for νμν τ oscillations in the CNGS beam. Experimental proposal, SPSC-2000-028 (2000) [CERN-SPSC-P-318] [LNGS-P25-00].Google Scholar
  2. [2]
    R. Acquafredda et al., The OPERA experiment in the CERN to Gran Sasso neutrino beam, 2009 JINST 4 P04018 [INSPIRE].
  3. [3]
    G. Acquistapace et al., The CERN neutrino beam to Gran Sasso (NGS), CERN-98-02 (1998) [INFN/AE-98/05].Google Scholar
  4. [4]
    R. Bailey et al., The CERN neutrino beam to Gran Sasso (NGS). Addendum to report CERN-98-02, INFN/AE-98/05, CERN-SL/99-034(DI) (1999) [INFN/AE-99/05].Google Scholar
  5. [5]
    OPERA collaboration, N. Agafonova et al., Discovery of τ neutrino appearance in the CNGS neutrino beam with the OPERA experiment, Phys. Rev. Lett. 115 (2015) 121802 [arXiv:1507.01417] [INSPIRE].
  6. [6]
    OPERA collaboration, N. Agafonova et al., Search for ν μν e oscillations with the OPERA experiment in the CNGS beam, JHEP 07 (2013) 004 [arXiv:1303.3953] [INSPIRE].
  7. [7]
    LSND collaboration, A. Aguilar et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  8. [8]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., A combined ν μν e and \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillation analysis of the MiniBooNE excesses, arXiv:1207.4809 [FERMILAB-PUB-12-394-AD-PPD] [LA-UR-12-23041].
  9. [9]
    G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  10. [10]
    F. Kaether et al., Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    J.N. Abdurashitov et al., Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source, Phys. Rev. C 73 (2006) 045805 [nucl-ex/0512041] [INSPIRE].
  12. [12]
    K. Niu, E. Mikumo and Y. Maeda, A possible decay in flight of a new type particle, Prog. Theor. Phys. 46 (1971) 1644 [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    OPERA collaboration, N. Agafonova et al., Determination of the muon charge sign with the dipolar spectrometers of the OPERA experiment, 2016 JINST 11 P07022 [arXiv:1404.5933] [INSPIRE].
  14. [14]
    Y.A. Gornushkin, S.G. Dmitrievsky and A.V. Chukanov, Locating of the neutrino interaction vertex with the help of electronic detectors in the OPERA experiment, Phys. Part. Nucl. Lett. 12 (2015) 89.CrossRefGoogle Scholar
  15. [15]
    OPERA collaboration, N. Agafonova et al., Observation of a first ν τ candidate in the OPERA experiment in the CNGS beam, Phys. Lett. B 691 (2010) 138 [arXiv:1006.1623] [INSPIRE].
  16. [16]
    OPERA collaboration, N. Agafonova et al., Procedure for short-lived particle detection in the OPERA experiment and its application to charm decays, Eur. Phys. J. C 74 (2014) 2986 [arXiv:1404.4357] [INSPIRE].
  17. [17]
    OPERA collaboration, N. Agafonova et al., New results on ν μν τ appearance with the OPERA experiment in the CNGS beam, JHEP 11 (2013) 036 [Erratum ibid. 04 (2014) 014] [arXiv:1308.2553] [INSPIRE].
  18. [18]
    A. Bertolin and N.T. Tran., OpCarac: an algorithm for the classification of the neutrino interactions recorded by the OPERA experiment, OPERA public note 100 (2009).Google Scholar
  19. [19]
    T.T. Böhlen et al., The FLUKA code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211.CrossRefADSGoogle Scholar
  20. [20]
    A. Ferrari, P. R. Sala, A. Fasso and J. Ranft, FLUKA: A multi-particle transport code, CERN-2005-010 (2005) [SLAC-R-773] [INFN-TC-05-11].Google Scholar
  21. [21]
  22. [22]
    C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator: physics and user manual, arXiv:1510.05494 [INSPIRE].
  24. [24]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  25. [25]
    E. Longo and I. Sestili, Monte Carlo calculation of photon initiated electromagnetic showers in lead glass, Nucl. Instrum. Meth. 128 (1975) 283 [Erratum ibid. 135 (1976) 587] [INSPIRE].
  26. [26]
    G. Grindhammer and S. Peters, The parameterized simulation of electromagnetic shower in homogeneous and sampling calorimeters, hep-ex/0001020.
  27. [27]
    C. Leroy and P. Rancoita, Physics of cascading shower generation and propagation in matter: Principles of high-energy, ultrahigh-energy and compensating calorimetry, Rept. Prog. Phys. 63 (2000) 505 [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    S. Zemskova, ν μν e oscillations search in the OPERA experiment, Phys. Part. Nucl. 47 (2016) 1003 [INSPIRE].
  29. [29]
    G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].
  30. [30]
    G. Cowan, Statistical data analysis, Clarendon Press, Oxford U.K. (1998).Google Scholar
  31. [31]
    NOMAD collaboration, P. Astier et al., Search for ν μν e oscillations in the NOMAD experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].
  32. [32]
    KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) from muon decay at rest, Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021] [INSPIRE].
  33. [33]
    MINOS, Daya Bay collaboration, P. Adamson et al., Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay and Bugey-3 experiments, Phys. Rev. Lett. 117 (2016) 151801 [arXiv:1607.01177] [INSPIRE].
  34. [34]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  35. [35]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
  36. [36]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Interiors 25 (1981) 297.CrossRefADSGoogle Scholar
  37. [37]
    F.D. Stacey and P.M. Davis, Physics of the Earth, 4th edition, Cambridge University Press, Cambridge U.K. (2008).Google Scholar
  38. [38]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • The OPERA collaboration
  • N. Agafonova
    • 1
  • A. Aleksandrov
    • 2
  • A. Anokhina
    • 3
  • S. Aoki
    • 4
  • A. Ariga
    • 5
  • T. Ariga
    • 5
    • 6
  • A. Bertolin
    • 7
  • C. Bozza
    • 8
  • R. Brugnera
    • 7
    • 9
  • A. Buonaura
    • 2
    • 10
  • S. Buontempo
    • 2
  • M. Chernyavskiy
    • 11
  • A. Chukanov
    • 12
  • L. Consiglio
    • 2
  • N. D’Ambrosio
    • 13
  • G. De Lellis
    • 2
    • 10
  • M. De Serio
    • 14
    • 15
  • P. del Amo Sanchez
    • 16
  • A. Di Crescenzo
    • 2
    • 10
  • D. Di Ferdinando
    • 17
  • N. Di Marco
    • 13
  • S. Dmitrievsky
    • 12
  • M. Dracos
    • 18
  • D. Duchesneau
    • 16
  • S. Dusini
    • 7
  • T. Dzhatdoev
    • 3
  • J. Ebert
    • 19
  • A. Ereditato
    • 5
  • J. Favier
    • 16
  • R. A. Fini
    • 15
  • F. Fornari
    • 17
    • 20
  • T. Fukuda
    • 21
  • G. Galati
    • 2
    • 10
  • A. Garfagnini
    • 7
    • 9
  • V. Gentile
    • 22
  • J. Goldberg
    • 23
  • Y. Gornushkin
    • 12
  • S. Gorbunov
    • 11
  • G. Grella
    • 8
  • A. M. Guler
    • 24
  • C. Gustavino
    • 25
  • C. Hagner
    • 19
  • T. Hara
    • 4
  • T. Hayakawa
    • 21
  • A. Hollnagel
    • 19
  • B. Hosseini
    • 2
    • 10
    • 37
  • K. Ishiguro
    • 21
  • A. Iuliano
    • 10
  • K. Jakovcic
    • 26
  • C. Jollet
    • 18
  • C. Kamiscioglu
    • 24
    • 27
  • M. Kamiscioglu
    • 24
  • S. H. Kim
    • 28
  • N. Kitagawa
    • 21
  • B. Klicek
    • 29
  • K. Kodama
    • 30
  • M. Komatsu
    • 21
  • U. Kose
    • 7
    • 38
  • I. Kreslo
    • 5
  • F. Laudisio
    • 7
    • 9
  • A. Lauria
    • 2
    • 10
  • A. Ljubicic
    • 26
  • A. Longhin
    • 7
    • 9
  • P. Loverre
    • 25
  • A. Malgin
    • 1
  • M. Malenica
    • 26
  • G. Mandrioli
    • 17
  • T. Matsuo
    • 31
  • V. Matveev
    • 1
  • N. Mauri
    • 17
    • 20
  • E. Medinaceli
    • 7
    • 9
    • 39
  • F. Meisel
    • 5
  • A. Meregaglia
    • 18
  • S. Mikado
    • 32
  • M. Miyanishi
    • 21
  • F. Mizutani
    • 4
  • P. Monacelli
    • 25
  • M. C. Montesi
    • 2
    • 10
  • K. Morishima
    • 21
  • M. T. Muciaccia
    • 14
    • 15
  • N. Naganawa
    • 21
  • T. Naka
    • 21
  • M. Nakamura
    • 21
  • T. Nakano
    • 21
  • K. Niwa
    • 21
  • N. Okateva
    • 11
  • S. Ogawa
    • 31
  • K. Ozaki
    • 4
  • A. Paoloni
    • 33
  • L. Paparella
    • 14
    • 15
  • B. D. Park
    • 28
  • L. Pasqualini
    • 17
    • 20
  • A. Pastore
    • 15
  • L. Patrizii
    • 17
  • H. Pessard
    • 16
  • D. Podgrudkov
    • 3
  • N. Polukhina
    • 11
    • 34
  • M. Pozzato
    • 17
    • 20
  • F. Pupilli
    • 7
  • M. Roda
    • 7
    • 9
    • 40
  • T. Roganova
    • 3
  • H. Rokujo
    • 21
  • G. Rosa
    • 25
  • O. Ryazhskaya
    • 1
  • O. Sato
    • 21
  • A. Schembri
    • 13
  • I. Shakiryanova
    • 1
  • T. Shchedrina
    • 11
  • H. Shibuya
    • 31
  • E. Shibayama
    • 31
  • T. Shiraishi
    • 21
  • S. Simone
    • 14
    • 15
  • C. Sirignano
    • 7
    • 9
  • G. Sirri
    • 17
  • A. Sotnikov
    • 12
  • M. Spinetti
    • 33
  • L. Stanco
    • 7
  • N. Starkov
    • 11
  • S. M. Stellacci
    • 8
  • M. Stipcevic
    • 29
  • P. Strolin
    • 2
    • 10
  • S. Takahashi
    • 4
  • M. Tenti
    • 17
    Email author
  • F. Terranova
    • 35
  • V. Tioukov
    • 2
  • S. Vasina
    • 12
    Email author
  • P. Vilain
    • 36
  • E. Voevodina
    • 2
  • L. Votano
    • 33
  • J. L. Vuilleumier
    • 5
  • G. Wilquet
    • 36
  • C. S. Yoon
    • 28
  1. 1.INR — Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia
  2. 2.INFN — Sezione di NapoliNapoliItaly
  3. 3.SINP MSU — Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Kobe UniversityKobeJapan
  5. 5.Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP)University of BernBernSwitzerland
  6. 6.Faculty of Arts and ScienceKyushu UniversityFukuokaJapan
  7. 7.INFN — Sezione di PadovaPadovaItaly
  8. 8.Dipartimento di Fisica dell’Università di Salerno and “Gruppo Collegato” INFNFisciano (Salerno)Italy
  9. 9.Dipartimento di Fisica e Astronomia dell’Università di PadovaPadovaItaly
  10. 10.Dipartimento di Fisica dell’Università Federico II di NapoliNapoliItaly
  11. 11.LPI — Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  12. 12.JINR — Joint Institute for Nuclear ResearchDubnaRussia
  13. 13.INFN — Laboratori Nazionali del Gran SassoAssergiItaly
  14. 14.Dipartimento di Fisica dell’Università di BariBariItaly
  15. 15.INFN — Sezione di BariBariItaly
  16. 16.LAPP, Université Savoie Mont Blanc, CNRS/IN2P3Annecy-le-VieuxFrance
  17. 17.INFN — Sezione di BolognaBolognaItaly
  18. 18.IPHC, Université de Strasbourg, CNRS/IN2P3StrasbourgFrance
  19. 19.Hamburg UniversityHamburgGermany
  20. 20.Dipartimento di Fisica e Astronomia dell’Università di BolognaBolognaItaly
  21. 21.Nagoya UniversityNagoyaJapan
  22. 22.GSSI — Gran Sasso Science InstituteL’AquilaItaly
  23. 23.Department of PhysicsTechnionHaifaIsrael
  24. 24.METU — Middle East Technical UniversityAnkaraTurkey
  25. 25.INFN — Sezione di RomaRomaItaly
  26. 26.Ruder Bošković InstituteZagrebCroatia
  27. 27.Ankara UniversityAnkaraTurkey
  28. 28.Gyeongsang National UniversityJinjuKorea
  29. 29.Center of Excellence for Advanced Materials and Sensing DevicesRuder Bošković InstituteZagrebCroatia
  30. 30.Aichi University of EducationKariya (Aichi-Ken)Japan
  31. 31.Toho UniversityFunabashiJapan
  32. 32.Nihon UniversityNarashinoJapan
  33. 33.INFN — Laboratori Nazionali di Frascati dell’INFNFrascati (Roma)Italy
  34. 34.MEPhI — Moscow Engineering Physics InstituteMoscowRussia
  35. 35.Dipartimento di Fisica dell’Università di Milano-BicoccaMilanoItaly
  36. 36.IIHEUniversité Libre de BruxellesBrusselsBelgium
  37. 37.INFN Sezione di CagliariMonserratoItaly
  38. 38.CERNGenevaSwitzerland
  39. 39.Osservatorio Astronomico di PadovaPadovaItaly
  40. 40.University of LiverpoolLiverpoolUK

Personalised recommendations