Dark quarkonium formation in the early universe

  • M. Geller
  • S. Iwamoto
  • G. Lee
  • Y. Shadmi
  • O. Telem
Open Access
Regular Article - Theoretical Physics


The relic abundance of heavy stable particles charged under a confining gauge group can be depleted by a second stage of annihilations near the deconfinement temperature. This proceeds via the formation of quarkonia-like states, in which the heavy pair subsequently annihilates. The size of the quarkonium formation cross section was the subject of some debate. We estimate this cross section in a simple toy model. The dominant process can be viewed as a rearrangement of the heavy and light quarks, leading to a geometric cross section of hadronic size. In contrast, processes in which only the heavy constituents are involved lead to mass-suppressed cross sections. These results apply to any scenario with bound states of sizes much larger than their inverse mass, such as U(1) models with charged particles of different masses, and can be used to construct ultra-heavy dark-matter models with masses above the naïve unitarity bound. They are also relevant for the cosmology of any stable colored relic.


Phenomenological Models QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Jacoby and S. Nussinov, The relic abundance of massive colored particles after a late hadronic annihilation stage, arXiv:0712.2681 [INSPIRE].
  2. [2]
    C.F. Berger, L. Covi, S. Kraml and F. Palorini, The number density of a charged relic, JCAP 10 (2008) 005 [arXiv:0807.0211] [INSPIRE].
  3. [3]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Phenomenology of iquarkonium, Nucl. Phys. B 811 (2009) 274 [arXiv:0810.1524] [INSPIRE].
  4. [4]
    F. Chen, J.M. Cline and A.R. Frey, Nonabelian dark matter: Models and constraints, Phys. Rev. D 80 (2009) 083516 [arXiv:0907.4746] [INSPIRE].ADSGoogle Scholar
  5. [5]
    H. Davoudiasl et al., Hylogenesis: a unified origin for baryonic visible matter and antibaryonic dark matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.L. Feng and Y. Shadmi, WIMPless dark matter from non-abelian hidden sectors with anomaly-mediated supersymmetry breaking, Phys. Rev. D 83 (2011) 095011 [arXiv:1102.0282] [INSPIRE].ADSGoogle Scholar
  7. [7]
    N. Blinov, D.E. Morrissey, K. Sigurdson and S. Tulin, Dark matter antibaryons from a supersymmetric hidden sector, Phys. Rev. D 86 (2012) 095021 [arXiv:1206.3304] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].ADSGoogle Scholar
  9. [9]
    K.K. Boddy et al., Self-interacting dark matter from a non-Abelian hidden sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.M. Cline and A.R. Frey, Nonabelian dark matter models for 3.5 keV X-rays, JCAP 10 (2014) 013 [arXiv:1408.0233] [INSPIRE].
  11. [11]
    K.K. Boddy et al., Strongly interacting dark matter: self-interactions and keV lines, Phys. Rev. D 90 (2014) 095016 [arXiv:1408.6532] [INSPIRE].ADSGoogle Scholar
  12. [12]
    Y. Bai and P. Schwaller, Scale of dark QCD, Phys. Rev. D 89 (2014) 063522.ADSGoogle Scholar
  13. [13]
    L. Forestell, D.E. Morrissey and K. Sigurdson, Non-Abelian dark forces and the relic densities of dark glueballs, Phys. Rev. D 95 (2017) 015032 [arXiv:1605.08048] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Harigaya, M. Ibe, K. Kaneta, W. Nakano and M. Suzuki, Thermal relic dark matter beyond the unitarity limit, JHEP 08 (2016) 151 [arXiv:1606.00159] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.M. Cline, W. Huang and G.D. Moore, Challenges for models with composite states, Phys. Rev. D 94 (2016) 055029 [arXiv:1607.07865] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P. Asadi et al., Capture and decay of electroweak WIMPonium, JCAP 02 (2017) 005 [arXiv:1610.07617] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark Matters secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP 05 (2017) 036 [arXiv:1612.07295] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.M. Cline, H. Liu, T. Slatyer and W. Xue, Enabling forbidden dark matter, Phys. Rev. D 96 (2017) 083521 [arXiv:1702.07716] [INSPIRE].
  20. [20]
    L. Forestell, D.E. Morrissey and K. Sigurdson, Cosmological bounds on non-Abelian dark forces, Phys. Rev. D 97 (2018) 075029 [arXiv:1710.06447] [INSPIRE].ADSGoogle Scholar
  21. [21]
    V. De Luca, A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Colored dark matter, arXiv:1801.01135 [INSPIRE].
  22. [22]
    A. Berlin et al., Cosmology and accelerator tests of strongly interacting dark matter, Phys. Rev. D 97 (2018) 055033 [arXiv:1801.05805] [INSPIRE].ADSGoogle Scholar
  23. [23]
    H. Baer, K.-m. Cheung and J.F. Gunion, A heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [INSPIRE].
  24. [24]
    J. Kang, M.A. Luty and S. Nasri, The relic abundance of long-lived heavy colored particles, JHEP 09 (2008) 086 [hep-ph/0611322] [INSPIRE].
  25. [25]
    A. Arvanitaki et al., Limits on split supersymmetry from gluino cosmology, Phys. Rev. D 72 (2005) 075011 [hep-ph/0504210] [INSPIRE].
  26. [26]
    V.A. Novikov et al., Charmonium and gluons: basic experimental facts and theoretical introduction, Phys. Rept. 41 (1978) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E. Eichten et al., Charmonium: the model, Phys. Rev. D 17 (1978) 3090 [Erratum ibid. D 21 (1980) 313] [INSPIRE].
  28. [28]
    Quarkonium Working Group collaboration, N. Brambilla et al., Heavy quarkonium physics, hep-ph/0412158 [INSPIRE].
  29. [29]
    N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].
  30. [30]
    N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and gluo-dissociation of quarkonium in pNRQCD, JHEP 12 (2011) 116 [arXiv:1109.5826] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and quarkonium dissociation by inelastic parton scattering, JHEP 05 (2013) 130 [arXiv:1303.6097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    C. Simolo, Extraction of characteristic constants in QCD with perturbative and nonperturbative methods, Ph.D. thesis, Milan University, Milan, Italy (2006), arXiv:0807.1501 [INSPIRE].
  33. [33]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  34. [34]
  35. [35]
    C.J. Morningstar and M.J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004] [INSPIRE].
  36. [36]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].
  37. [37]
    P. Froelich et al., Hydrogen-antihydrogen collisions, Phys. Rev. Lett. 84 (2000) 4577.ADSCrossRefGoogle Scholar
  38. [38]
    S. Jonsell et al., Stability of hydrogen-antihydrogen mixtures at low energies, Phys. Rev. A 64 (2001) 052712.Google Scholar
  39. [39]
    S. Jonsell et al., Hydrogen-antihydrogen scattering in the Born-Oppenheimer approximation, J. Phys. B 37 (2004) 1195.ADSGoogle Scholar
  40. [40]
    J.R. Taylor, Scattering theory: the quantum theory on nonrelativistic collisions, John Wiley & Sons, Inc., U.S.A. (1972).Google Scholar
  41. [41]
    K. Strasburger, Accurate Born-Oppenheimer potential energy curve for the hydrogen-antihydrogen system, J. Phys. B 35 (2002) L435.ADSGoogle Scholar
  42. [42]
    J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden Charged Dark Matter, JCAP 07 (2009) 004 [arXiv:0905.3039] [INSPIRE].
  43. [43]
    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M.B. Wise and Y. Zhang, Stable bound states of asymmetric dark matter, Phys. Rev. D 90 (2014) 055030 [arXiv:1407.4121] [INSPIRE].
  46. [46]
    H. An, M.B. Wise and Y. Zhang, Effects of bound states on dark matter annihilation, Phys. Rev. D 93 (2016) 115020 [arXiv:1604.01776] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A.V. Manohar and M.B. Wise, Heavy quark physics, Cambridge University Press, Cambridge U.K. (2000).CrossRefGoogle Scholar
  48. [48]
    C. Quigg and J.L. Rosner, Quantum mechanics with applications to quarkonium, Phys. Rept. 56 (1979) 167 [INSPIRE].
  49. [49]
    K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Maryland Center for Fundamental Physics, Department of PhysicsUniversity of MarylandCollege ParkUSA
  2. 2.Physics DepartmentTechnion — Israel Institute of TechnologyHaifaIsrael
  3. 3.Dipartimento di Fisica e AstronomiaUniversità di PadovaPaduaItaly
  4. 4.Department of Physics, LEPPCornell UniversityIthacaUSA
  5. 5.Department of PhysicsKorea UniversitySeoulKorea

Personalised recommendations