Dark quarkonium formation in the early universe


The relic abundance of heavy stable particles charged under a confining gauge group can be depleted by a second stage of annihilations near the deconfinement temperature. This proceeds via the formation of quarkonia-like states, in which the heavy pair subsequently annihilates. The size of the quarkonium formation cross section was the subject of some debate. We estimate this cross section in a simple toy model. The dominant process can be viewed as a rearrangement of the heavy and light quarks, leading to a geometric cross section of hadronic size. In contrast, processes in which only the heavy constituents are involved lead to mass-suppressed cross sections. These results apply to any scenario with bound states of sizes much larger than their inverse mass, such as U(1) models with charged particles of different masses, and can be used to construct ultra-heavy dark-matter models with masses above the naïve unitarity bound. They are also relevant for the cosmology of any stable colored relic.

A preprint version of the article is available at ArXiv.


  1. [1]

    C. Jacoby and S. Nussinov, The relic abundance of massive colored particles after a late hadronic annihilation stage, arXiv:0712.2681 [INSPIRE].

  2. [2]

    C.F. Berger, L. Covi, S. Kraml and F. Palorini, The number density of a charged relic, JCAP 10 (2008) 005 [arXiv:0807.0211] [INSPIRE].

  3. [3]

    K. Cheung, W.-Y. Keung and T.-C. Yuan, Phenomenology of iquarkonium, Nucl. Phys. B 811 (2009) 274 [arXiv:0810.1524] [INSPIRE].

  4. [4]

    F. Chen, J.M. Cline and A.R. Frey, Nonabelian dark matter: Models and constraints, Phys. Rev. D 80 (2009) 083516 [arXiv:0907.4746] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    H. Davoudiasl et al., Hylogenesis: a unified origin for baryonic visible matter and antibaryonic dark matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    J.L. Feng and Y. Shadmi, WIMPless dark matter from non-abelian hidden sectors with anomaly-mediated supersymmetry breaking, Phys. Rev. D 83 (2011) 095011 [arXiv:1102.0282] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    N. Blinov, D.E. Morrissey, K. Sigurdson and S. Tulin, Dark matter antibaryons from a supersymmetric hidden sector, Phys. Rev. D 86 (2012) 095021 [arXiv:1206.3304] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    K.K. Boddy et al., Self-interacting dark matter from a non-Abelian hidden sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    J.M. Cline and A.R. Frey, Nonabelian dark matter models for 3.5 keV X-rays, JCAP 10 (2014) 013 [arXiv:1408.0233] [INSPIRE].

  11. [11]

    K.K. Boddy et al., Strongly interacting dark matter: self-interactions and keV lines, Phys. Rev. D 90 (2014) 095016 [arXiv:1408.6532] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    Y. Bai and P. Schwaller, Scale of dark QCD, Phys. Rev. D 89 (2014) 063522.

    ADS  Google Scholar 

  13. [13]

    L. Forestell, D.E. Morrissey and K. Sigurdson, Non-Abelian dark forces and the relic densities of dark glueballs, Phys. Rev. D 95 (2017) 015032 [arXiv:1605.08048] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    K. Harigaya, M. Ibe, K. Kaneta, W. Nakano and M. Suzuki, Thermal relic dark matter beyond the unitarity limit, JHEP 08 (2016) 151 [arXiv:1606.00159] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J.M. Cline, W. Huang and G.D. Moore, Challenges for models with composite states, Phys. Rev. D 94 (2016) 055029 [arXiv:1607.07865] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    P. Asadi et al., Capture and decay of electroweak WIMPonium, JCAP 02 (2017) 005 [arXiv:1610.07617] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  18. [18]

    M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark Matters secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP 05 (2017) 036 [arXiv:1612.07295] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J.M. Cline, H. Liu, T. Slatyer and W. Xue, Enabling forbidden dark matter, Phys. Rev. D 96 (2017) 083521 [arXiv:1702.07716] [INSPIRE].

  20. [20]

    L. Forestell, D.E. Morrissey and K. Sigurdson, Cosmological bounds on non-Abelian dark forces, Phys. Rev. D 97 (2018) 075029 [arXiv:1710.06447] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    V. De Luca, A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Colored dark matter, arXiv:1801.01135 [INSPIRE].

  22. [22]

    A. Berlin et al., Cosmology and accelerator tests of strongly interacting dark matter, Phys. Rev. D 97 (2018) 055033 [arXiv:1801.05805] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    H. Baer, K.-m. Cheung and J.F. Gunion, A heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [INSPIRE].

  24. [24]

    J. Kang, M.A. Luty and S. Nasri, The relic abundance of long-lived heavy colored particles, JHEP 09 (2008) 086 [hep-ph/0611322] [INSPIRE].

  25. [25]

    A. Arvanitaki et al., Limits on split supersymmetry from gluino cosmology, Phys. Rev. D 72 (2005) 075011 [hep-ph/0504210] [INSPIRE].

  26. [26]

    V.A. Novikov et al., Charmonium and gluons: basic experimental facts and theoretical introduction, Phys. Rept. 41 (1978) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    E. Eichten et al., Charmonium: the model, Phys. Rev. D 17 (1978) 3090 [Erratum ibid. D 21 (1980) 313] [INSPIRE].

  28. [28]

    Quarkonium Working Group collaboration, N. Brambilla et al., Heavy quarkonium physics, hep-ph/0412158 [INSPIRE].

  29. [29]

    N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].

  30. [30]

    N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and gluo-dissociation of quarkonium in pNRQCD, JHEP 12 (2011) 116 [arXiv:1109.5826] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  31. [31]

    N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and quarkonium dissociation by inelastic parton scattering, JHEP 05 (2013) 130 [arXiv:1303.6097] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  32. [32]

    C. Simolo, Extraction of characteristic constants in QCD with perturbative and nonperturbative methods, Ph.D. thesis, Milan University, Milan, Italy (2006), arXiv:0807.1501 [INSPIRE].

  33. [33]

    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  34. [34]

    M. Teper, Large N , PoS(LATTICE 2008)022 [arXiv:0812.0085] [INSPIRE].

  35. [35]

    C.J. Morningstar and M.J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004] [INSPIRE].

  36. [36]

    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].

  37. [37]

    P. Froelich et al., Hydrogen-antihydrogen collisions, Phys. Rev. Lett. 84 (2000) 4577.

    ADS  Article  Google Scholar 

  38. [38]

    S. Jonsell et al., Stability of hydrogen-antihydrogen mixtures at low energies, Phys. Rev. A 64 (2001) 052712.

  39. [39]

    S. Jonsell et al., Hydrogen-antihydrogen scattering in the Born-Oppenheimer approximation, J. Phys. B 37 (2004) 1195.

    ADS  Google Scholar 

  40. [40]

    J.R. Taylor, Scattering theory: the quantum theory on nonrelativistic collisions, John Wiley & Sons, Inc., U.S.A. (1972).

    Google Scholar 

  41. [41]

    K. Strasburger, Accurate Born-Oppenheimer potential energy curve for the hydrogen-antihydrogen system, J. Phys. B 35 (2002) L435.

    ADS  Google Scholar 

  42. [42]

    J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden Charged Dark Matter, JCAP 07 (2009) 004 [arXiv:0905.3039] [INSPIRE].

  43. [43]

    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].

    Article  Google Scholar 

  44. [44]

    K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. [45]

    M.B. Wise and Y. Zhang, Stable bound states of asymmetric dark matter, Phys. Rev. D 90 (2014) 055030 [arXiv:1407.4121] [INSPIRE].

  46. [46]

    H. An, M.B. Wise and Y. Zhang, Effects of bound states on dark matter annihilation, Phys. Rev. D 93 (2016) 115020 [arXiv:1604.01776] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    A.V. Manohar and M.B. Wise, Heavy quark physics, Cambridge University Press, Cambridge U.K. (2000).

    Book  Google Scholar 

  48. [48]

    C. Quigg and J.L. Rosner, Quantum mechanics with applications to quarkonium, Phys. Rept. 56 (1979) 167 [INSPIRE].

  49. [49]

    K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to G. Lee.

Additional information

ArXiv ePrint: 1802.07720

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geller, M., Iwamoto, S., Lee, G. et al. Dark quarkonium formation in the early universe. J. High Energ. Phys. 2018, 135 (2018). https://doi.org/10.1007/JHEP06(2018)135

Download citation


  • Phenomenological Models
  • QCD Phenomenology