Advertisement

The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy

  • Vittorio Del Duca
  • Stefan Druc
  • James Drummond
  • Claude Duhr
  • Falko Dulat
  • Robin Marzucca
  • Georgios PapathanasiouEmail author
  • Bram Verbeek
Open Access
Regular Article - Theoretical Physics

Abstract

We present an all-loop dispersion integral, well-defined to arbitrary logarithmic accuracy, describing the multi-Regge limit of the 2 → 5 amplitude in planar \( \mathcal{N}=4 \) super Yang-Mills theory. It follows from factorization, dual conformal symmetry and consistency with soft limits, and specifically holds in the region where the energies of all produced particles have been analytically continued. After promoting the known symbol of the 2-loop N -particle MHV amplitude in this region to a function, we specialize to N = 7, and extract from it the next-to-leading order (NLO) correction to the BFKL central emission vertex, namely the building block of the dispersion integral that had not yet appeared in the well-studied six-gluon case. As an application of our results, we explicitly compute the seven-gluon amplitude at next-to-leading logarithmic accuracy through 5 loops for the MHV case, and through 3 and 4 loops for the two independent NMHV helicity configurations, respectively.

Keywords

1/N Expansion Extended Supersymmetry Scattering Amplitudes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Di Vecchia, The Birth of string theory, Lect. Notes Phys. 737 (2008) 59 [arXiv:0704.0101] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].ADSGoogle Scholar
  3. [3]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  5. [5]
    R. Brower, C. DeTar and J. Weis, Regge theory for multiparticle amplitudes, Phys. Rept. 14 (1974) 257.ADSCrossRefGoogle Scholar
  6. [6]
    P.D.B. Collins, An Introduction to Regge Theory and High-Energy Physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2009).Google Scholar
  7. [7]
    J.R. Forshaw and D.A. Ross, Quantum chromodynamics and the pomeron, Cambridge Lect. Notes Phys. 9 (1997) 1.Google Scholar
  8. [8]
    V. Del Duca, An introduction to the perturbative QCD Pomeron and to jet physics at large rapidities, hep-ph/9503226 [INSPIRE].
  9. [9]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].
  10. [10]
    F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  12. [12]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
  14. [14]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].
  15. [15]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].
  18. [18]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].
  20. [20]
    Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
  21. [21]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].
  24. [24]
    Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
  25. [25]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, N = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: The Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].
  27. [27]
    L.N. Lipatov, Analytic properties of high energy production amplitudes in N = 4 SUSY, Theor. Math. Phys. 170 (2012) 166 [arXiv:1008.1015] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    V.S. Fadin and L.N. Lipatov, BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at N = 4 SUSY, Phys. Lett. B 706 (2012) 470 [arXiv:1111.0782] [INSPIRE].
  29. [29]
    L. Lipatov, A. Prygarin and H.J. Schnitzer, The Multi-Regge limit of NMHV Amplitudes in N = 4 SYM Theory, JHEP 01 (2013) 068 [arXiv:1205.0186] [INSPIRE].
  30. [30]
    L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L.N. Lipatov and A. Prygarin, Mandelstam cuts and light-like Wilson loops in N = 4 SUSY, Phys. Rev. D 83 (2011) 045020 [arXiv:1008.1016] [INSPIRE].
  32. [32]
    L.N. Lipatov and A. Prygarin, BFKL approach and six-particle MHV amplitude in N = 4 super Yang-Mills, Phys. Rev. D 83 (2011) 125001 [arXiv:1011.2673] [INSPIRE].
  33. [33]
    J. Bartels, L.N. Lipatov and A. Prygarin, MHV amplitude for 3 → 3 gluon scattering in Regge limit, Phys. Lett. B 705 (2011) 507 [arXiv:1012.3178] [INSPIRE].
  34. [34]
    V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].
  36. [36]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    J. Bartels, J. Kotanski and V. Schomerus, Excited Hexagon Wilson Loops for Strongly Coupled N = 4 SYM, JHEP 01 (2011) 096 [arXiv:1009.3938] [INSPIRE].
  38. [38]
    J. Bartels, J. Kotanski, V. Schomerus and M. Sprenger, The Excited Hexagon Reloaded, arXiv:1311.1512 [INSPIRE].
  39. [39]
    B. Basso, S. Caron-Huot and A. Sever, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP 01 (2015) 027 [arXiv:1407.3766] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping Null Polygon Wilson Loops, JHEP 03 (2011) 092 [arXiv:1010.5009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP 12 (2011) 011 [arXiv:1102.0062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    A. Sever, P. Vieira and T. Wang, OPE for Super Loops, JHEP 11 (2011) 051 [arXiv:1108.1575] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].
  45. [45]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching Data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].
  46. [46]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix III. The two-particle contributions, JHEP 08 (2014) 085 [arXiv:1402.3307] [INSPIRE].
  47. [47]
    B. Basso, A. Sever and P. Vieira, Collinear Limit of Scattering Amplitudes at Strong Coupling, Phys. Rev. Lett. 113 (2014) 261604 [arXiv:1405.6350] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix IV. Gluons and Fusion, JHEP 09 (2014) 149 [arXiv:1407.1736] [INSPIRE].
  49. [49]
    B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all Helicity Amplitudes, JHEP 08 (2015) 018 [arXiv:1412.1132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all Helicity Amplitudes II. Form Factors and Data Analysis, JHEP 12 (2015) 088 [arXiv:1508.02987] [INSPIRE].
  51. [51]
    B. Basso, A. Sever and P. Vieira, Hexagonal Wilson loops in planar \( \mathcal{N}=4 \) SYM theory at finite coupling, J. Phys. A 49 (2016) 41LT01 [arXiv:1508.03045] [INSPIRE].
  52. [52]
    J. Bartels, L.N. Lipatov and A. Prygarin, Collinear and Regge behavior of 2 → 4 MHV amplitude in N = 4 super Yang-Mills theory, arXiv:1104.4709 [INSPIRE].
  53. [53]
    Y. Hatsuda, Wilson loop OPE, analytic continuation and multi-Regge limit, JHEP 10 (2014) 38 [arXiv:1404.6506] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J.M. Drummond and G. Papathanasiou, Hexagon OPE Resummation and Multi-Regge Kinematics, JHEP 02 (2016) 185 [arXiv:1507.08982] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP 10 (2012) 074 [arXiv:1207.0186] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Pennington, The six-point remainder function to all loop orders in the multi-Regge limit, JHEP 01 (2013) 059 [arXiv:1209.5357] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Broedel and M. Sprenger, Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space, JHEP 05 (2016) 055 [arXiv:1512.04963] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP 06 (2014) 116 [arXiv:1402.3300] [INSPIRE].
  61. [61]
    L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP 01 (2016) 053 [arXiv:1509.08127] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett. 117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J.M. Drummond, G. Papathanasiou and M. Spradlin, A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon, JHEP 03 (2015) 072 [arXiv:1412.3763] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP 02 (2017) 137 [arXiv:1612.08976] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Scattering Amplitudes and the Positive Grassmannian, Cambridge University Press, Cambridge U.K. (2012).Google Scholar
  66. [66]
    J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    I. Prlina, M. Spradlin, J. Stankowicz and S. Stanojevic, Boundaries of Amplituhedra and NMHV Symbol Alphabets at Two Loops, JHEP 04 (2018) 049 [arXiv:1712.08049] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    V. Del Duca et al., Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP 08 (2016) 152 [arXiv:1606.08807] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude in \( \mathcal{N}=4 \) super-Yang-Mills theory, Phys. Rev. D 86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].
  71. [71]
    J. Bartels, A. Kormilitzin and L. Lipatov, Analytic structure of the N = 7 scattering amplitude in \( \mathcal{N}=4 \) SYM theory in the multi-Regge kinematics: Conformal Regge pole contribution, Phys. Rev. D 89 (2014) 065002 [arXiv:1311.2061] [INSPIRE].
  72. [72]
    J. Bartels, A. Kormilitzin and L.N. Lipatov, Analytic structure of the N = 7 scattering amplitude in \( \mathcal{N}=4 \) theory in multi-Regge kinematics: Conformal Regge cut contribution, Phys. Rev. D 91 (2015) 045005 [arXiv:1411.2294] [INSPIRE].
  73. [73]
    S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093 [arXiv:1309.6521] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    T. Bargheer, G. Papathanasiou and V. Schomerus, The Two-Loop Symbol of all Multi-Regge Regions, JHEP 05 (2016) 012 [arXiv:1512.07620] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A. Prygarin, M. Spradlin, C. Vergu and A. Volovich, All Two-Loop MHV Amplitudes in Multi-Regge Kinematics From Applied Symbology, Phys. Rev. D 85 (2012) 085019 [arXiv:1112.6365] [INSPIRE].
  76. [76]
    J. Bartels, V. Schomerus and M. Sprenger, Multi-Regge Limit of the n-Gluon Bubble Ansatz, JHEP 11 (2012) 145 [arXiv:1207.4204] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    J. Bartels, V. Schomerus and M. Sprenger, The Bethe roots of Regge cuts in strongly coupled \( \mathcal{N}=4 \) SYM theory, JHEP 07 (2015) 098 [arXiv:1411.2594] [INSPIRE].
  78. [78]
    V. Del Duca, C. Duhr and E.W.N. Glover, Iterated amplitudes in the high-energy limit, JHEP 12 (2008) 097 [arXiv:0809.1822] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    F.C.S. Brown, Single-valued hyperlogarithms and unipotent differential equations, http://www.ihes.fr/~brown/RHpaper5.pdf.
  80. [80]
    F.C.S. Brown, Notes on motivic periods, arXiv:1512.06410.
  81. [81]
    L. Freyhult, Review of AdS/CFT Integrability, Chapter III.4: Twist States and the cusp Anomalous Dimension, Lett. Math. Phys. 99 (2012) 255 [arXiv:1012.3993] [INSPIRE].
  82. [82]
    B. Basso, On the Regge Limit of Polygonal Wilson Loops, talk at Amplitudes 2016, Stockholm Sweden (2016), http://agenda.albanova.se/contributionDisplay.py?contribId=272&confId=5285.
  83. [83]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces M 0,n(R), Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419] [INSPIRE].
  84. [84]
    G. Papathanasiou, Hexagon Wilson Loop OPE and Harmonic Polylogarithms, JHEP 11 (2013) 150 [arXiv:1310.5735] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  85. [85]
    L.J. Dixon, J. Drummond, A.J. McLeod, G. Papathanasiou and M. Spradlin, to appear.Google Scholar
  86. [86]
    S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [INSPIRE].
  87. [87]
    C. Bauer, A. Frink and R. Kreckel, Introduction to the ginac framework for symbolic computation within the c++ programming language, J. Symb. Comput. 33 (2002) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  89. [89]
    S. Weinzierl, Symbolic expansion of transcendental functions, Comput. Phys. Commun. 145 (2002) 357 [math-ph/0201011] [INSPIRE].
  90. [90]
    S. Moch and P. Uwer, -xsummer- transcendental functions and symbolic summation in form, Comput. Phys. Commun. 174 (2006) 759 [math-ph/0508008].
  91. [91]
    O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys. 08 (2014) 589 [arXiv:1302.6445] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    T. Bargheer, Systematics of the Multi-Regge Three-Loop Symbol, JHEP 11 (2017) 077 [arXiv:1606.07640] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  93. [93]
    L.N. Lipatov, Integrability of scattering amplitudes in N = 4 SUSY, J. Phys. A 42 (2009) 304020 [arXiv:0902.1444] [INSPIRE].
  94. [94]
    G. Chachamis and A. Sabio Vera, Open Spin Chains and Complexity in the High Energy Limit, arXiv:1801.04872 [INSPIRE].
  95. [95]
    K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.Google Scholar
  96. [96]
    C. Bogner and F. Brown, Symbolic integration and multiple polylogarithms, arXiv:1209.6524 [INSPIRE].
  97. [97]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    C. Duhr, Mathematical aspects of scattering amplitudes, in Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014), Boulder U.S.A. (2014), pg. 419 [arXiv:1411.7538] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Vittorio Del Duca
    • 1
  • Stefan Druc
    • 2
  • James Drummond
    • 2
  • Claude Duhr
    • 3
    • 4
  • Falko Dulat
    • 5
  • Robin Marzucca
    • 4
  • Georgios Papathanasiou
    • 6
    Email author
  • Bram Verbeek
    • 4
  1. 1.Institute for Theoretical Physics, ETH ZürichZürichSwitzerland
  2. 2.School of Physics & AstronomyUniversity of SouthamptonSouthamptonU.K.
  3. 3.Theoretical Physics Department, CERNGeneva 23Switzerland
  4. 4.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-La-NeuveBelgium
  5. 5.SLAC National Accelerator LaboratoryStanford UniversityStanfordU.S.A.
  6. 6.DESY Theory Group, DESY HamburgHamburgGermany

Personalised recommendations