Advertisement

Notes on melonic O(N)q−1 tensor models

  • Sayantan Choudhury
  • Anshuman Dey
  • Indranil Halder
  • Lavneet Janagal
  • Shiraz Minwalla
  • Rohan R. PoojaryEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

It has recently been demonstrated that the large N limit of a model of fermions charged under the global/gauge symmetry group O(N)q−1 agrees with the large N limit of the SYK model. In these notes we investigate aspects of the dynamics of the O(N)q−1 theories that differ from their SYK counterparts. We argue that the spectrum of fluctuations about the finite temperature saddle point in these theories has \( \left(q-1\right)\frac{N^2}{2} \) new light modes in addition to the light Schwarzian mode that exists even in the SYK model, suggesting that the bulk dual description of theories differ significantly if they both exist. We also study the thermal partition function of a mass deformed version of the SYK model. At large mass we show that the effective entropy of this theory grows with energy like E ln E (i.e. faster than Hagedorn) up to energies of order N2. The canonical partition function of the model displays a deconfinement or Hawking Page type phase transition at temperatures of order 1/ln N. We derive these results in the large mass limit but argue that they are qualitatively robust to small corrections in J/m.

Keywords

1/N Expansion Black Holes in String Theory Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    A. Kitaev, A simple model of quantum holography, http://online.kitp.ucsb.edu/online/entangled15/kitaev/, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/, talks at Kavli Institute for Theoretical Physics, Santa Barbara, U.S.A., 7 April 2015 and 27 May 2015.
  3. [3]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  5. [5]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  7. [7]
    G. Mandal, P. Nayak and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, JHEP 11 (2017) 046 [arXiv:1702.04266] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  8. [8]
    D.J. Gross and V. Rosenhaus, The Bulk Dual of SYK: Cubic Couplings, JHEP 05 (2017) 092 [arXiv:1702.08016] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  9. [9]
    S. Förste and I. Golla, Nearly AdS 2 SUGRA and the super-Schwarzian, Phys. Lett. B 771 (2017) 157 [arXiv:1703.10969] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  10. [10]
    S.R. Das, A. Jevicki and K. Suzuki, Three Dimensional View of the SYK/AdS Duality, JHEP 09 (2017) 017 [arXiv:1704.07208] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  11. [11]
    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
  12. [12]
    J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  13. [13]
    A.M. García-García and J.J.M. Verbaarschot, Analytical Spectral Density of the Sachdev-Ye-Kitaev Model at finite N, Phys. Rev. D 96 (2017) 066012 [arXiv:1701.06593] [INSPIRE].
  14. [14]
    D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  15. [15]
    V.V. Belokurov and E.T. Shavgulidze, Exact solution of the Schwarzian theory, Phys. Rev. D 96 (2017) 101701 [arXiv:1705.02405] [INSPIRE].ADSGoogle Scholar
  16. [16]
    E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 [INSPIRE].
  17. [17]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    I.R. Klebanov and G. Tarnopolsky, On Large N Limit of Symmetric Traceless Tensor Models, JHEP 10 (2017) 037 [arXiv:1706.00839] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  19. [19]
    R. Gurau, Colored Group Field Theory, Commun. Math. Phys. 304 (2011) 69 [arXiv:0907.2582] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  20. [20]
    R. Gurau, The 1/N expansion of colored tensor models, Annales Henri Poincaré 12 (2011) 829 [arXiv:1011.2726] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  21. [21]
    R. Gurau and V. Rivasseau, The 1/N expansion of colored tensor models in arbitrary dimension, EPL 95 (2011) 50004 [arXiv:1101.4182] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    R. Gurau, The complete 1/N expansion of colored tensor models in arbitrary dimension, Annales Henri Poincaré 13 (2012) 399 [arXiv:1102.5759] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  23. [23]
    V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, Critical behavior of colored tensor models in the large N limit, Nucl. Phys. B 853 (2011) 174 [arXiv:1105.3122] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  24. [24]
    R. Gurau and J.P. Ryan, Colored Tensor Models — a review, SIGMA 8 (2012) 020 [arXiv:1109.4812] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  25. [25]
    P. Narayan and J. Yoon, SYK-like Tensor Models on the Lattice, JHEP 08 (2017) 083 [arXiv:1705.01554] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  26. [26]
    J. Yoon, SYK Models and SYK-like Tensor Models with Global Symmetry, JHEP 10 (2017) 183 [arXiv:1707.01740] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. [27]
    S. Dartois, H. Erbin and S. Mondal, Conformality of 1/N corrections in SYK-like models, arXiv:1706.00412 [INSPIRE].
  28. [28]
    T. Nishinaka and S. Terashima, A note on Sachdev-Ye-Kitaev like model without random coupling, Nucl. Phys. B 926 (2018) 321 [arXiv:1611.10290] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  29. [29]
    C. Peng, M. Spradlin and A. Volovich, A Supersymmetric SYK-like Tensor Model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  30. [30]
    C. Krishnan, S. Sanyal and P.N. Bala Subramanian, Quantum Chaos and Holographic Tensor Models, JHEP 03 (2017) 056 [arXiv:1612.06330] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  31. [31]
    F. Ferrari, The Large D Limit of Planar Diagrams, arXiv:1701.01171 [INSPIRE].
  32. [32]
    R. Gurau, Quenched equals annealed at leading order in the colored SYK model, EPL 119 (2017) 30003 [arXiv:1702.04228] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    V. Bonzom, L. Lionni and A. Tanasa, Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders, J. Math. Phys. 58 (2017) 052301 [arXiv:1702.06944] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  34. [34]
    C. Krishnan, K.V.P. Kumar and S. Sanyal, Random Matrices and Holographic Tensor Models, JHEP 06 (2017) 036 [arXiv:1703.08155] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  35. [35]
    S. Chaudhuri, V.I. Giraldo-Rivera, A. Joseph, R. Loganayagam and J. Yoon, Abelian Tensor Models on the Lattice, Phys. Rev. D 97 (2018) 086007 [arXiv:1705.01930] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    T. Azeyanagi, F. Ferrari and F.I. Schaposnik Massolo, Phase Diagram of Planar Matrix Quantum Mechanics, Tensor and Sachdev-Ye-Kitaev Models, Phys. Rev. Lett. 120 (2018) 061602 [arXiv:1707.03431] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    S. Giombi, I.R. Klebanov and G. Tarnopolsky, Bosonic tensor models at large N and small ϵ, Phys. Rev. D 96 (2017) 106014 [arXiv:1707.03866] [INSPIRE].ADSGoogle Scholar
  38. [38]
    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, A First order deconfinement transition in large N Yang-Mills theory on a small S 3, Phys. Rev. D 71 (2005) 125018 [hep-th/0502149] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  43. [43]
    K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of Operators in Large N Tensor Models, Phys. Rev. D 97 (2018) 026016 [arXiv:1707.09347] [INSPIRE].ADSGoogle Scholar
  44. [44]
    C. Krishnan and K.V.P. Kumar, Towards a Finite-N Hologram, JHEP 10 (2017) 099 [arXiv:1706.05364] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  45. [45]
    D.J. Gross and E. Witten, Possible Third Order Phase Transition in the Large N Lattice Gauge Theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].ADSGoogle Scholar
  46. [46]
    S.R. Wadia, A Study of U(N) Lattice Gauge Theory in 2-dimensions, arXiv:1212.2906 [INSPIRE].
  47. [47]
    S.R. Wadia, N = Infinity Phase Transition in a Class of Exactly Soluble Model Lattice Gauge Theories, Phys. Lett. 93B (1980) 403 [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].MathSciNetzbMATHADSGoogle Scholar
  49. [49]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].MathSciNetzbMATHADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Sayantan Choudhury
    • 1
    • 2
  • Anshuman Dey
    • 1
  • Indranil Halder
    • 1
  • Lavneet Janagal
    • 1
  • Shiraz Minwalla
    • 1
  • Rohan R. Poojary
    • 1
    Email author
  1. 1.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia
  2. 2.Quantum Gravity and Unified Theory and Theoretical Cosmology GroupMax Planck Institute for Gravitational Physics (Albert Einstein Institute)Potsdam-GolmGermany

Personalised recommendations