Advertisement

Recursive Soft Drop

  • Frédéric A. DreyerEmail author
  • Lina Necib
  • Gregory Soyez
  • Jesse Thaler
Open Access
Regular Article - Theoretical Physics

Abstract

We introduce a new jet substructure technique called Recursive Soft Drop, which generalizes the Soft Drop algorithm to have multiple grooming layers. Like the original Soft Drop method, this new recursive variant traverses a jet clustering tree to remove soft wide-angle contamination. By enforcing the Soft Drop condition N times, Recursive Soft Drop improves the jet mass resolution for boosted hadronic objects like W bosons, top quarks, and Higgs bosons. We further show that this improvement in mass resolution persists when including the effects of pileup, up to large pileup multiplicities. In the limit that N goes to infinity, the resulting groomed jets formally have zero catchment area. As an alternative approach, we present a bottom-up version of Recursive Soft Drop which, in its local form, is similar to Recursive Soft Drop and which, in its global form, can be used to perform event-wide grooming.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Abdesselam et al., Boosted objects: A Probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012, Eur. Phys. J. C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].
  4. [4]
    D. Adams et al., Towards an Understanding of the Correlations in Jet Substructure, Eur. Phys. J. C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    M. Cacciari, Phenomenological and theoretical developments in jet physics at the LHC, Int. J. Mod. Phys. A 30 (2015) 1546001 [arXiv:1509.02272] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, arXiv:1709.04464 [INSPIRE].
  7. [7]
    D. Bhatia et al., Performance versus robustness: Two-prong substructure taggers for the LHC, contribution to Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, arXiv:1803.07977 [INSPIRE].
  8. [8]
    M.H. Seymour, Tagging a heavy Higgs boson, in ECFA Large Hadron Collider Workshop, Proceedings 2, Aachen, Germany, 4–9 October 1990, pp. 557–569 (1991) [INSPIRE].
  9. [9]
    M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: A Comparative study, Z. Phys. C 62 (1994) 127 [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.M. Butterworth, B.E. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].
  11. [11]
    J.M. Butterworth, J.R. Ellis and A.R. Raklev, Reconstructing sparticle mass spectra using hadronic decays, JHEP 05 (2007) 033 [hep-ph/0702150] [INSPIRE].
  12. [12]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  18. [18]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].
  19. [19]
    J.-H. Kim, Rest Frame Subjet Algorithm With SISCone Jet For Fully Hadronic Decaying Higgs Search, Phys. Rev. D 83 (2011) 011502 [arXiv:1011.1493] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].
  21. [21]
    J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  23. [23]
    Y.-T. Chien, Telescoping jets: Probing hadronic event structure with multiple R’s, Phys. Rev. D 90 (2014) 054008 [arXiv:1304.5240] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A.J. Larkoski, I. Moult and D. Neill, Power Counting to Better Jet Observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].
  25. [25]
    I. Moult, L. Necib and J. Thaler, New Angles on Energy Correlation Functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].
  26. [26]
    I. Feige, M.D. Schwartz, I.W. Stewart and J. Thaler, Precision Jet Substructure from Boosted Event Shapes, Phys. Rev. Lett. 109 (2012) 092001 [arXiv:1204.3898] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    M. Field, G. Gur-Ari, D.A. Kosower, L. Mannelli and G. Perez, Three-Prong Distribution of Massive Narrow QCD Jets, Phys. Rev. D 87 (2013) 094013 [arXiv:1212.2106] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    M. Dasgupta, A. Powling and A. Siodmok, On jet substructure methods for signal jets, JHEP 08 (2015) 079 [arXiv:1503.01088] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    M.H. Seymour, Jet shapes in hadron collisions: Higher orders, resummation and hadronization, Nucl. Phys. B 513 (1998) 269 [hep-ph/9707338] [INSPIRE].
  33. [33]
    H.-n. Li, Z. Li and C.P. Yuan, QCD resummation for jet substructures, Phys. Rev. Lett. 107 (2011) 152001 [arXiv:1107.4535] [INSPIRE].
  34. [34]
    A.J. Larkoski, QCD Analysis of the Scale-Invariance of Jets, Phys. Rev. D 86 (2012) 054004 [arXiv:1207.1437] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Jankowiak and A.J. Larkoski, Angular Scaling in Jets, JHEP 04 (2012) 039 [arXiv:1201.2688] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    Y.-T. Chien and I. Vitev, Jet Shape Resummation Using Soft-Collinear Effective Theory, JHEP 12 (2014) 061 [arXiv:1405.4293] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    Y.-T. Chien, Resummation of Jet Shapes and Extracting Properties of the quark-gluon Plasma, Int. J. Mod. Phys. Conf. Ser. 37 (2015) 1560047 [arXiv:1411.0741] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    J. Isaacson, H.-n. Li, Z. Li and C.P. Yuan, Factorization for substructures of boosted Higgs jets, Phys. Lett. B 771 (2017) 619 [arXiv:1505.06368] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    D. Krohn, M.D. Schwartz, T. Lin and W.J. Waalewijn, Jet Charge at the LHC, Phys. Rev. Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    W.J. Waalewijn, Calculating the Charge of a Jet, Phys. Rev. D 86 (2012) 094030 [arXiv:1209.3019] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A.J. Larkoski, I. Moult and D. Neill, Toward Multi-Differential Cross Sections: Measuring Two Angularities on a Single Jet, JHEP 09 (2014) 046 [arXiv:1401.4458] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross Sections and Fully-Unintegrated Parton Distribution Functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    D. Bertolini, J. Thaler and J.R. Walsh, The First Calculation of Fractional Jets, JHEP 05 (2015) 008 [arXiv:1501.01965] [INSPIRE].
  45. [45]
    B. Bhattacherjee, S. Mukhopadhyay, M.M. Nojiri, Y. Sakaki and B.R. Webber, Associated jet and subjet rates in light-quark and gluon jet discrimination, JHEP 04 (2015) 131 [arXiv:1501.04794] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    A.J. Larkoski, I. Moult and D. Neill, Analytic Boosted Boson Discrimination, JHEP 05 (2016) 117 [arXiv:1507.03018] [INSPIRE].
  47. [47]
    M. Dasgupta, L. Schunk and G. Soyez, Jet shapes for boosted jet two-prong decays from first-principles, JHEP 04 (2016) 166 [arXiv:1512.00516] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Dasgupta, A. Powling, L. Schunk and G. Soyez, Improved jet substructure methods: Y-splitter and variants with grooming, JHEP 12 (2016) 079 [arXiv:1609.07149] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    G.P. Salam, L. Schunk and G. Soyez, Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging, JHEP 03 (2017) 022 [arXiv:1612.03917] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].
  51. [51]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    Z.-B. Kang, F. Ringer and I. Vitev, Jet substructure using semi-inclusive jet functions in SCET, JHEP 11 (2016) 155 [arXiv:1606.07063] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    A. Hornig, Y. Makris and T. Mehen, Jet Shapes in Dijet Events at the LHC in SCET, JHEP 04 (2016) 097 [arXiv:1601.01319] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after Soft Drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    Y.-T. Chien, A. Emerman, S.-C. Hsu, S. Meehan and Z. Montague, Telescoping jet substructure, arXiv:1711.11041 [INSPIRE].
  57. [57]
    Y.-T. Chien and R. Kunnawalkam Elayavalli, Probing heavy ion collisions using quark and gluon jet substructure, arXiv:1803.03589 [INSPIRE].
  58. [58]
    CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].
  59. [59]
    ATLAS collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2013) 076 [arXiv:1306.4945] [INSPIRE].
  60. [60]
    CMS collaboration, Identification techniques for highly boosted W bosons that decay into hadrons, JHEP 12 (2014) 017 [arXiv:1410.4227] [INSPIRE].
  61. [61]
    CMS collaboration, Search for a Higgs boson in the decay channel \( H\to Z{Z}^{\left(*\right)}\to q\overline{q}{\ell}^{-}{\ell}^{+} \) in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].
  62. [62]
    CMS collaboration, Search for a Standard Model-like Higgs boson decaying into WW to l nu qqbar in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-13-008 (2013).
  63. [63]
    ATLAS collaboration, Measurement of jet charge in dijet events from \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052003 [arXiv:1509.05190] [INSPIRE].
  64. [64]
    ATLAS collaboration, Measurement of colour flow with the jet pull angle in \( t\overline{t} \) events using the ATLAS detector at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 750 (2015) 475 [arXiv:1506.05629] [INSPIRE].
  65. [65]
    ATLAS collaboration, Performance of jet substructure techniques in early \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2015-035 (2015).
  66. [66]
    ATLAS collaboration, Identification of boosted, hadronically decaying W bosons and comparisons with ATLAS data taken at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 154 [arXiv:1510.05821] [INSPIRE].
  67. [67]
    ATLAS collaboration, Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, Phys. Rev. D 93 (2016) 032009 [arXiv:1510.03818] [INSPIRE].
  68. [68]
    ATLAS collaboration, Studies of b-tagging performance and jet substructure in a high p T \( g\to b\overline{b} \) rich sample of large-R jets from pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2016-002 (2016).
  69. [69]
    ATLAS collaboration, Boosted Higgs (\( b\overline{b} \) ) Boson Identification with the ATLAS Detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-039 (2016).
  70. [70]
    ATLAS collaboration, Discrimination of Light Quark and Gluon Jets in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, ATLAS-CONF-2016-034 (2016).
  71. [71]
    CMS collaboration, Measurement of the \( \mathrm{t}\overline{\mathrm{t}} \) production cross section at 13 TeV in the all-jets final state, CMS-PAS-TOP-16-013 (2016).
  72. [72]
    CMS collaboration, Search for \( \mathrm{t}\overline{\mathrm{t}}\mathrm{H} \) production in the \( \mathrm{H}\to \mathrm{b}\overline{\mathrm{b}} \) decay channel with s = 13 TeV pp collisions at the CMS experiment,CMS-PAS-HIG-16-004 (2016).
  73. [73]
    CMS collaboration, Search for BSM \( t\overline{t} \) Production in the Boosted All-Hadronic Final State, CMS-PAS-EXO-11-006 (2011).
  74. [74]
    ATLAS, CMS collaborations, Boosted top quark techniques and searches for \( t\overline{t} \) resonances at the LHC, J. Phys. Conf. Ser. 452 (2013) 012034 [INSPIRE].
  75. [75]
    ATLAS, CMS collaborations, Boosted Top Quarks, Top Pair Resonances and Top Partner Searches at the LHC, EPJ Web Conf. 60 (2013) 09003 [INSPIRE].
  76. [76]
    ATLAS collaboration, Performance of boosted top quark identification in 2012 ATLAS data, ATLAS-CONF-2013-084 (2013).
  77. [77]
    CMS collaboration, Search for Anomalous \( t\overline{t} \) Production in the Highly-Boosted All-Hadronic Final State, JHEP 09 (2012) 029 [Erratum ibid. 03 (2014) 132] [arXiv:1204.2488] [INSPIRE].
  78. [78]
    CMS collaboration, Search for pair-produced vector-like quarks of charge −1/3 decaying to bH using boosted Higgs jet-tagging in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-14-001 (2014).
  79. [79]
    CMS collaboration, Search for top-Higgs resonances in all-hadronic final states using jet substructure methods, CMS-PAS-B2G-14-002 (2014).
  80. [80]
    CMS collaboration, Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure, JHEP 06 (2015) 080 [arXiv:1503.01952] [INSPIRE].
  81. [81]
    CMS collaboration, Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2016) 145 [arXiv:1506.01443] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  83. [83]
    ATLAS collaboration, Searches for heavy diboson resonances in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 09 (2016) 173 [arXiv:1606.04833] [INSPIRE].
  84. [84]
    ATLAS collaboration, Search for heavy resonances decaying to a Z boson and a photon in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 764 (2017) 11 [arXiv:1607.06363] [INSPIRE].
  85. [85]
    ATLAS collaboration, Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 763 (2016) 251 [arXiv:1608.02372] [INSPIRE].
  86. [86]
    ATLAS collaboration, Search for resonances with boson-tagged jets in 15.5 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV collected with the ATLAS detector, ATLAS-CONF-2016-055 (2016).
  87. [87]
    ATLAS collaboration, Search for diboson resonances in the llqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-071 (2015).
  88. [88]
    ATLAS collaboration, Search for diboson resonances in the ννqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-068 (2015).
  89. [89]
    CMS collaboration, Search for dark matter in final states with an energetic jet, or a hadronically decaying W or Z boson using 12.9 fb −1 of data at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-037 (2016).
  90. [90]
    CMS collaboration, Search for new physics in a boosted hadronic monotop final state using 12.9 f b −1 of \( \sqrt{s}=13 \) T eV data, CMS-PAS-EXO-16-040 (2016).
  91. [91]
    CMS collaboration, Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets, JHEP 12 (2016) 083 [Erratum ibid. 08 (2017) 035] [arXiv:1607.05764] [INSPIRE].
  92. [92]
    CMS collaboration, Searches for invisible Higgs boson decays with the CMS detector, CMS-PAS-HIG-16-016 (2016).
  93. [93]
    CMS collaboration, Search for top quark-antiquark resonances in the all-hadronic final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-B2G-15-003 (2016).
  94. [94]
    CMS collaboration, Search for dark matter in association with a boosted top quark in the all hadronic final state, CMS-PAS-EXO-16-017 (2016).
  95. [95]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
  96. [96]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Monte Carlo generators for HERA physics. Proceedings, Workshop, Hamburg, Germany, 1998-1999, pp. 270–279, 1998, [hep-ph/9907280] [INSPIRE].
  97. [97]
    CMS collaboration, Measurement of the differential jet production cross section with respect to jet mass and transverse momentum in dijet events from pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SMP-16-010 (2017).
  98. [98]
    ATLAS collaboration, A measurement of the soft-drop jet mass in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, arXiv:1711.08341[INSPIRE].
  99. [99]
    CMS collaboration, Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 119 (2017) 111802 [arXiv:1705.10532] [INSPIRE].
  100. [100]
    ATLAS collaboration, Search for diboson resonances with boson-tagged jets in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 777 (2018) 91 [arXiv:1708.04445] [INSPIRE].
  101. [101]
    CMS collaboration, Search for a heavy resonance decaying into a Z boson and a vector boson in the \( \nu \overline{\nu}\mathrm{q}\overline{\mathrm{q}} \) final state, arXiv:1803.03838 [INSPIRE].
  102. [102]
    CMS collaboration, Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at \( \sqrt{s}=13 \) TeV, JHEP 06 (2018) 027 [arXiv:1801.08427] [INSPIRE].
  103. [103]
    CMS collaboration, Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair, Phys. Rev. Lett. 120 (2018) 071802 [arXiv:1709.05543] [INSPIRE].
  104. [104]
    A. Larkoski, S. Marzani, J. Thaler, A. Tripathee and W. Xue, Exposing the QCD Splitting Function with CMS Open Data, Phys. Rev. Lett. 119 (2017) 132003 [arXiv:1704.05066] [INSPIRE].CrossRefADSGoogle Scholar
  105. [105]
    A. Tripathee, W. Xue, A. Larkoski, S. Marzani and J. Thaler, Jet Substructure Studies with CMS Open Data, Phys. Rev. D 96 (2017) 074003 [arXiv:1704.05842] [INSPIRE].ADSGoogle Scholar
  106. [106]
    CMS collaboration, Measurement of the Splitting Function in pp and Pb-Pb Collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. Lett. 120 (2018) 142302 [arXiv:1708.09429] [INSPIRE].
  107. [107]
    ALICE collaboration, D. Caffarri, Exploring jet substructure with jet shapes in ALICE, Nucl. Phys. A 967 (2017) 528 [arXiv:1704.05230] [INSPIRE].
  108. [108]
    STAR collaboration, K. Kauder, Measurement of the Shared Momentum Fraction z g using Jet Reconstruction in p+p and Au+Au Collisions with STAR, Nucl. Phys. A 967 (2017) 516 [arXiv:1704.03046] [INSPIRE].
  109. [109]
    Y.-T. Chien and I. Vitev, Probing the Hardest Branching within Jets in Heavy-Ion Collisions, Phys. Rev. Lett. 119 (2017) 112301 [arXiv:1608.07283] [INSPIRE].CrossRefADSGoogle Scholar
  110. [110]
    G. Milhano, U.A. Wiedemann and K.C. Zapp, Sensitivity of jet substructure to jet-induced medium response, Phys. Lett. B 779 (2018) 409 [arXiv:1707.04142] [INSPIRE].CrossRefADSGoogle Scholar
  111. [111]
    Y. Mehtar-Tani and K. Tywoniuk, Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung, JHEP 04 (2017) 125 [arXiv:1610.08930] [INSPIRE].CrossRefADSGoogle Scholar
  112. [112]
    M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  113. [113]
    M. Cacciari, G.P. Salam and G. Soyez, SoftKiller, a particle-level pileup removal method, Eur. Phys. J. C 75 (2015) 59 [arXiv:1407.0408] [INSPIRE].CrossRefADSGoogle Scholar
  114. [114]
    M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].CrossRefADSGoogle Scholar
  115. [115]
    A.J. Larkoski and J. Thaler, Unsafe but Calculable: Ratios of Angularities in Perturbative QCD, JHEP 09 (2013) 137 [arXiv:1307.1699] [INSPIRE].CrossRefADSGoogle Scholar
  116. [116]
    A.J. Larkoski, S. Marzani and J. Thaler, Sudakov Safety in Perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].ADSGoogle Scholar
  117. [117]
    C. Frye, A.J. Larkoski, J. Thaler and K. Zhou, Casimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting Observables, JHEP 09 (2017) 083 [arXiv:1704.06266] [INSPIRE].CrossRefADSGoogle Scholar
  118. [118]
  119. [119]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  120. [120]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  121. [121]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  122. [122]
    G. Soyez, Pileup mitigation at the LHC: a theorist’s view, Habilitation Thesis, Université Pierre et Marie Curie, and IPhT, CEA Saclay (2018) [arXiv:1801.09721] [INSPIRE].
  123. [123]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].CrossRefADSGoogle Scholar
  124. [124]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].CrossRefzbMATHGoogle Scholar
  125. [125]
    J. Tseng and H. Evans, Sequential recombination algorithm for jet clustering and background subtraction, Phys. Rev. D 88 (2013) 014044 [arXiv:1304.1025] [INSPIRE].ADSGoogle Scholar
  126. [126]
    D. Duffty and Z. Sullivan, A priority based noise tolerant jet framework and algorithm, arXiv:1606.04497 [INSPIRE].
  127. [127]
    ATLAS collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581 [arXiv:1510.03823] [INSPIRE].
  128. [128]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  129. [129]
    M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E t flow: A Case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].
  130. [130]
    A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a Short Distance Top Mass with Light Grooming, arXiv:1708.02586 [INSPIRE].
  131. [131]
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].
  132. [132]
    N.T. Meyer and K. Desch, Determining resonance parameters of heavy Higgs bosons at a future linear collider, Eur. Phys. J. C 35 (2004) 171 [INSPIRE].CrossRefADSGoogle Scholar
  133. [133]
    F. Bishara, R. Contino and J. Rojo, Higgs pair production in vector-boson fusion at the LHC and beyond, Eur. Phys. J. C 77 (2017) 481 [arXiv:1611.03860] [INSPIRE].CrossRefADSGoogle Scholar
  134. [134]
    G. Soyez, G.P. Salam, J. Kim, S. Dutta and M. Cacciari, Pileup subtraction for jet shapes, Phys. Rev. Lett. 110 (2013) 162001 [arXiv:1211.2811] [INSPIRE].CrossRefADSGoogle Scholar
  135. [135]
    CMS collaboration, Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus and MET, CMS-PAS-PFT-09-001 (2009).
  136. [136]
    D. Bertolini, P. Harris, M. Low and N. Tran, Pileup Per Particle Identification, JHEP 10 (2014) 059 [arXiv:1407.6013] [INSPIRE].CrossRefADSGoogle Scholar
  137. [137]
    P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Pileup Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051 [arXiv:1707.08600] [INSPIRE].CrossRefADSGoogle Scholar
  138. [138]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
  139. [139]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e + e annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].CrossRefGoogle Scholar
  140. [140]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, The two-jet rate in e + e at next-to-next-to-leading-logarithmic order, Phys. Rev. Lett. 117 (2016) 172001 [arXiv:1607.03111] [INSPIRE].CrossRefGoogle Scholar
  141. [141]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  142. [142]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  143. [143]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  144. [144]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
  145. [145]
    S. Catani and M.H. Seymour, The Dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  146. [146]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.
  3. 3.IPhT, CEA Saclay, CNRS UMR 3681Gif-sur-Yvette cedexFrance

Personalised recommendations