Skip to main content

Critical points at infinity, non-Gaussian saddles, and bions

A preprint version of the article is available at arXiv.

Abstract

It has been argued that many non-perturbative phenomena in quantum mechanics (QM) and quantum field theory (QFT) are determined by complex field configurations, and that these contributions should be understood in terms of Picard-Lefschetz theory. In this work we compute the contribution from non-BPS multi-instanton configurations, such as instanton-anti-instanton \( \left[\mathrm{\mathcal{I}}\overline{\mathrm{\mathcal{I}}}\right] \) pairs, and argue that these contributions should be interpreted as exact critical points at infinity. The Lefschetz thimbles associated with such critical points have a specific structure arising from the presence of non-Gaussian, quasi-zero mode (QZM), directions. When fermion degrees of freedom are present, as in supersymmetric theories, the effective bosonic potential can be written as the sum of a classical and a quantum potential. We show that in this case the semi-classical contribution of the critical point at infinity vanishes, but there is a non-trivial contribution that arises from its associated non-Gaussian QZM-thimble. This approach resolves several puzzles in the literature concerning the semi-classical contribution of correlated \( \left[\mathrm{\mathcal{I}}\overline{\mathrm{\mathcal{I}}}\right] \) pairs. It has the surprising consequence that the configurations dominating the expansion of observables, and the critical points defining the Lefschetz thimble decomposition need not be the same, a feature not present in the traditional Picard-Lefschetz approach.

References

  1. [1]

    S.R. Coleman, Aspects of Symmetry, Cambridge University Press (1979).

  2. [2]

    J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 113 (2002) 1 [INSPIRE].

    Google Scholar 

  3. [3]

    E.B. Bogomolny, Calculation of instanton-anti-instanton contributions in quantum mechanics, Phys. Lett. B 91 (1980) 431 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    J. Zinn-Justin, Multi-Instanton Contributions in Quantum Mechanics, Nucl. Phys. B 192 (1981) 125 [INSPIRE].

  5. [5]

    A. Cherman, D. Dorigoni and M. Ünsal, Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles, JHEP 10 (2015) 056 [arXiv:1403.1277] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    G.V. Dunne and M. Ünsal, Resurgence and Trans-series in Quantum Field Theory: The CP(N-1) Model, JHEP 11 (2012) 170 [arXiv:1210.2423] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    A. Cherman, D. Dorigoni, G.V. Dunne and M. Ünsal, Resurgence in Quantum Field Theory: Nonperturbative Effects in the Principal Chiral Model, Phys. Rev. Lett. 112 (2014) 021601 [arXiv:1308.0127] [INSPIRE].

  8. [8]

    T. Misumi, M. Nitta and N. Sakai, Resurgence in sine-Gordon quantum mechanics: Exact agreement between multi-instantons and uniform WKB, JHEP 09 (2015) 157 [arXiv:1507.00408] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    G. Basar, G.V. Dunne and M. Ünsal, Resurgence theory, ghost-instantons and analytic continuation of path integrals, JHEP 10 (2013) 041 [arXiv:1308.1108] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    P.C. Argyres and M. Ünsal, The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion and renormalon effects, JHEP 08 (2012) 063 [arXiv:1206.1890] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    M.M. Anber and T. Sulejmanpasic, The renormalon diagram in gauge theories on \( \mathrm{\mathbb{R}}3 \times \mathbb{S}1 \), JHEP 01 (2015) 139 [arXiv:1410.0121] [INSPIRE].

  12. [12]

    A. Behtash, G.V. Dunne, T. Schäfer, T. Sulejmanpasic and M. Ünsal, Toward Picard-Lefschetz Theory of Path Integrals, Complex Saddles and Resurgence, arXiv:1510.03435 [INSPIRE].

  13. [13]

    G.V. Dunne and M. Ünsal, New Nonperturbative Methods in Quantum Field Theory: From Large-N Orbifold Equivalence to Bions and Resurgence, Ann. Rev. Nucl. Part. Sci. 66 (2016) 245 [arXiv:1601.03414] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    T. Sulejmanpasic and M. Ünsal, Aspects of perturbation theory in quantum mechanics: The BenderWu Mathematica ® package, Comput. Phys. Commun. 228 (2018) 273 [arXiv:1608.08256] [INSPIRE].

  15. [15]

    M. Kontsevich, On non-perturbative quantization, fukaya categories and resurgence, talk at Simons Center, (2015) [http://scgp.stonybrook.edu/video_portal/video.php?id=2183 ].

  16. [16]

    M. Kontsevich, Resurgence from the path integral perspective, talk at Perimeter Institute, (2012) [https://www.perimeterinstitute.ca/videos/resurgence-path-integral-perspective].

  17. [17]

    E. Witten, A New Look At The Path Integral Of Quantum Mechanics, arXiv:1009.6032 [INSPIRE].

  18. [18]

    E. Witten, Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    D. Harlow, J. Maltz and E. Witten, Analytic Continuation of Liouville Theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    A. Behtash, E. Poppitz, T. Sulejmanpasic and M. Ünsal, The curious incident of multi-instantons and the necessity of Lefschetz thimbles, JHEP 11 (2015) 175 [arXiv:1507.04063] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    A. Behtash, More on Homological Supersymmetric Quantum Mechanics, Phys. Rev. D 97 (2018) 065002 [arXiv:1703.00511] [INSPIRE].

  22. [22]

    A. Behtash, T. Sulejmanpasic, T. Schäfer and M. Ünsal, Hidden topological angles and Lefschetz thimbles, Phys. Rev. Lett. 115 (2015) 041601 [arXiv:1502.06624] [INSPIRE].

  23. [23]

    A. Behtash, G.V. Dunne, T. Schäfer, T. Sulejmanpasic and M. Ünsal, Complexified path integrals, exact saddles and supersymmetry, Phys. Rev. Lett. 116 (2016) 011601 [arXiv:1510.00978] [INSPIRE].

  24. [24]

    C. Kozçaz, T. Sulejmanpasic, Y. Tanizaki and M. Ünsal, Cheshire Cat resurgence, Self-resurgence and Quasi-Exact Solvable Systems, arXiv:1609.06198 [INSPIRE].

  25. [25]

    T. Fujimori, S. Kamata, T. Misumi, M. Nitta and N. Sakai, Nonperturbative contributions from complexified solutions inP N −1 models, Phys. Rev. D 94 (2016) 105002 [arXiv:1607.04205] [INSPIRE].

  26. [26]

    D. Dorigoni and P. Glass, The grin of Cheshire cat resurgence from supersymmetric localization, SciPost Phys. 4 (2018) 012 [arXiv:1711.04802] [INSPIRE].

    Article  Google Scholar 

  27. [27]

    N. Nekrasov, Tying up instantons with anti-instantons, arXiv:1802.04202.

  28. [28]

    M.V. Fedoryuk, The saddle-point method, Izdat. Nauka, Moscow, MR 58:22580 (1977).

  29. [29]

    T. Schäfer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [hep-ph/9610451] [INSPIRE].

  30. [30]

    F. Pham, Vanishing homologies and the n variable saddlepoint method, Proc. Symp. Pure Math 2 (1983) 319.

    MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko, Singularities of Differentiable Maps, Volume 1, Birkhäuser Basel (2012).

  32. [32]

    E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].

  33. [33]

    M.A. Shifman, Beginning supersymmetry (supersymmetry in quantum mechanics), in ITEP lectures on particle physics and field theory, vol. 1, pp. 301-344, World Scientific, Singapore (1995) [INSPIRE].

  34. [34]

    I.I. Balitsky and A.V. Yung, Instanton Molecular Vacuum in N = 1 Supersymmetric Quantum Mechanics, Nucl. Phys. B 274 (1986) 475 [INSPIRE].

  35. [35]

    P.V. Buividovich, G.V. Dunne and S.N. Valgushev, Complex Path Integrals and Saddles in Two-Dimensional Gauge Theory, Phys. Rev. Lett. 116 (2016) 132001 [arXiv:1512.09021] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    M. Serone, G. Spada and G. Villadoro, Instantons from Perturbation Theory, Phys. Rev. D 96 (2017) 021701 [arXiv:1612.04376] [INSPIRE].

  37. [37]

    M. Serone, G. Spada and G. Villadoro, The Power of Perturbation Theory, JHEP 05 (2017) 056 [arXiv:1702.04148] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    G.V. Dunne, T. Sulejmanpasic and M. Ünsal, Thimbles and Resurgence in the Triple-well System, work in progress.

  39. [39]

    E. Brézin, J.C. Le Guillou and J. Zinn-Justin, Perturbation Theory at Large Order. 2. Role of the Vacuum Instability, Phys. Rev. D 15 (1977) 1558 [INSPIRE].

  40. [40]

    R. Balian, G. Parisi and A. Voros, Quartic Oscillator, in Feynman Path Integrals. Proceedings of the International Colloquium held in Marseille, May 1978, pp. 337-360 (1978).

  41. [41]

    J.L. Richard and A. Rouet, Complex Saddle Points Versus Dilute Gas Approximation in the Double Well Anharmonic Oscillator, Nucl. Phys. B 185 (1981) 47 [INSPIRE].

  42. [42]

    A. Lapedes and E. Mottola, Complex Path Integrals and Finite Temperature, Nucl. Phys. B 203 (1982) 58 [INSPIRE].

  43. [43]

    P.A. Millard, Complex Classical Paths and the One-dimensional sine-Gordon System, Nucl. Phys. B 259 (1985) 266 [INSPIRE].

  44. [44]

    I.M. Gelfand and A.M. Yaglom, Integration in functional spaces and it applications in quantum physics, J. Math. Phys. 1 (1960) 48 [INSPIRE].

  45. [45]

    S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  46. [46]

    C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

  47. [47]

    K. Kirsten, Spectral functions in mathematics and physics, Chapman and Hall/CRC (2001).

  48. [48]

    H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific (2006).

  49. [49]

    G.V. Dunne, Functional determinants in quantum field theory, J. Phys. A 41 (2008) 304006 [arXiv:0711.1178] [INSPIRE].

  50. [50]

    M. Marino, Instantons and Large N, Cambridge University Press (2015).

  51. [51]

    A.J. McKane and M.B. Tarlie, Regularization of functional determinants using boundary perturbations, J. Phys. A 28 (1995) 6931 [cond-mat/9509126] [INSPIRE].

  52. [52]

    G.V. Dunne and H. Min, Beyond the thin-wall approximation: Precise numerical computation of prefactors in false vacuum decay, Phys. Rev. D 72 (2005) 125004 [hep-th/0511156] [INSPIRE].

  53. [53]

    S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction, Cambridge University Press (2017),

  54. [54]

    G.V. Dunne and M. Ünsal, Deconstructing zero: resurgence, supersymmetry and complex saddles, JHEP 12 (2016) 002 [arXiv:1609.05770] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  55. [55]

    M. Ünsal, Magnetic bion condensation: A New mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].

  56. [56]

    E. Poppitz, T. Schäfer and M. Ünsal, Universal mechanism of (semi-classical) deconfinement and theta-dependence for all simple groups, JHEP 03 (2013) 087 [arXiv:1212.1238] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  57. [57]

    R. Dabrowski and G.V. Dunne, Fractionalized Non-Self-Dual Solutions in the CP(N-1) Model, Phys. Rev. D 88 (2013) 025020 [arXiv:1306.0921] [INSPIRE].

  58. [58]

    M. Nitta, Fractional instantons and bions in the O(N) model with twisted boundary conditions, JHEP 03 (2015) 108 [arXiv:1412.7681] [INSPIRE].

  59. [59]

    Y. Liu, E. Shuryak and I. Zahed, Confining dyon-antidyon Coulomb liquid model. I., Phys. Rev. D 92 (2015) 085006 [arXiv:1503.03058] [INSPIRE].

  60. [60]

    M. Nitta, Fractional instantons and bions in the principal chiral model on2 × S 1 with twisted boundary conditions, JHEP 08 (2015) 063 [arXiv:1503.06336] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Schäfer.

Additional information

ArXiv ePrint: 1803.11533

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behtash, A., Dunne, G.V., Schäfer, T. et al. Critical points at infinity, non-Gaussian saddles, and bions. J. High Energ. Phys. 2018, 68 (2018). https://doi.org/10.1007/JHEP06(2018)068

Download citation

Keywords

  • Nonperturbative Effects
  • Differential and Algebraic Geometry
  • Resummation