Advertisement

D-type conformal matter and SU/USp quivers

  • Hee-Cheol Kim
  • Shlomo S. Razamat
  • Cumrun Vafa
  • Gabi Zafrir
Open Access
Regular Article - Theoretical Physics

Abstract

We discuss the four dimensional models obtained by compactifying a single M5 brane probing D N singularity (minimal D-type (1, 0) conformal matter in six dimensions) on a torus with flux for abelian subgroups of the SO(4N) flavor symmetry. We derive the resulting quiver field theories in four dimensions by first compactifying on a circle and relating the flux to duality domain walls in five dimensions. This leads to novel \( \mathcal{N}=1 \) dualities in 4 dimensions which arise from distinct five dimensional realizations of the circle compactifications of the D-type conformal matter.

Keywords

Supersymmetric Gauge Theory Duality in Gauge Field Theories Supersymmetry and Duality Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M5-branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6D conformal matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    L. Bhardwaj, Classification of 6D \( \mathcal{N}=\left(1,0\right) \) gauge theories, JHEP 11 (2015) 002 [arXiv:1502.06594] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6D SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].
  9. [9]
    D. Gaiotto and S.S. Razamat, \( \mathcal{N}=1 \) theories of class \( {\mathcal{S}}_k \), JHEP 07 (2015) 073 [arXiv:1503.05159] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d \( \mathcal{N}=\left(1,0\right) \) theories on T 2 and class S theories: part I, JHEP 07 (2015) 014 [arXiv:1503.06217] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d \( \mathcal{N}=\left(1,0\right) \) theories on S 1 /T 2 and class S theories: part II, JHEP 12 (2015) 131 [arXiv:1508.00915] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and \( 6{\mathrm{d}}_{\left(1,0\right)}\to 4{\mathrm{d}}_{\left(\mathcal{N}=2\right)} \), JHEP 11 (2015) 123 [arXiv:1504.08348] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S.S. Razamat, C. Vafa and G. Zafrir, 4d \( \mathcal{N}=1 \) from 6d (1, 0), JHEP 04 (2017) 064 [arXiv:1610.09178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    I. Bah et al., 4d \( \mathcal{N}=1 \) from 6d \( \mathcal{N}=\left(1,0\right) \) on a torus with fluxes, JHEP 06 (2017) 022 [arXiv:1702.04740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    N. Mekareeya, K. Ohmori, Y. Tachikawa and G. Zafrir, E 8 instantons on type-A ALE spaces and supersymmetric field theories, JHEP 09 (2017) 144 [arXiv:1707.04370] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    H.-C. Kim, S.S. Razamat, C. Vafa and G. Zafrir, E-string theory on Riemann surfaces, Fortsch. Phys. 66 (2018) 1700074 [arXiv:1709.02496] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    H.C. Kim, S.S. Razamat, C. Vafa and G. Zafrir, in preparation.Google Scholar
  18. [18]
    H. Hayashi et al., A new 5d description of 6d D-type minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].
  19. [19]
    G. Zafrir, Brane webs, 5d gauge theories and 6d \( \mathcal{N}=\left(1,0\right) \) SCFT’s, JHEP 12 (2015) 157 [arXiv:1509.02016] [INSPIRE].ADSzbMATHGoogle Scholar
  20. [20]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d dualities and Tao web diagrams, arXiv:1509.03300 [INSPIRE].
  21. [21]
    K. Ohmori and H. Shimizu, S 1 /T 2 compactifications of 6d \( \mathcal{N}=\left(1,0\right) \) theories and brane webs, JHEP 03 (2016) 024 [arXiv:1509.03195] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, More on 5d descriptions of 6d SCFTs, JHEP 10 (2016) 126 [arXiv:1512.08239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    O.J. Ganor, D.R. Morrison and N. Seiberg, Branes, Calabi-Yau spaces, and toroidal compactification of the N = 1 six-dimensional E 8 theory, Nucl. Phys. B 487 (1997) 93 [hep-th/9610251].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP 09 (2010) 063 [arXiv:1007.0992] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Hanany and N. Mekareeya, The small E 8 instanton and the Kraft Procesi transition, arXiv:1801.01129 [INSPIRE].
  26. [26]
    G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch at infinite coupling, arXiv:1712.06604 [INSPIRE].
  27. [27]
    O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) 163 [arXiv:1507.03860] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    C. Beem, S.S. Razamat and G. Zafrir, in preparation.Google Scholar
  30. [30]
    K.A. Intriligator and P. Pouliot, Exact superpotentials, quantum vacua and duality in supersymmetric Sp(N c) gauge theories, Phys. Lett. B 353 (1995) 471 [hep-th/9505006] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim superconformal index with enhanced En global symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d \( \mathcal{N}=1 \) theories, JHEP 01 (2017) 019 [arXiv:1506.03871] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    V. Spiridonov and O. Warnaar, Inversions of integral operators and elliptic beta integrals on root systems, Adv. Math. 207 (2006) 91 [math/0411044].
  34. [34]
    E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Hee-Cheol Kim
    • 1
    • 4
  • Shlomo S. Razamat
    • 2
  • Cumrun Vafa
    • 1
  • Gabi Zafrir
    • 3
  1. 1.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.
  2. 2.Department of PhysicsTechnionHaifaIsrael
  3. 3.IPMUUniversity of TokyoKashiwaJapan
  4. 4.Department of PhysicsPOSTECHPohangKorea

Personalised recommendations