Advertisement

No-go theorems for ekpyrosis from ten-dimensional supergravity

  • Kunihito UzawaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In this note we investigate whether the new ekpyrotic scenario can be embedded into ten-dimensional supergravity. We use that the scalar potential obtained from flux compactifications of type II supergravity with sources has a universal scaling with respect to the dilaton and the volume mode. Similar to the investigation of inflationary models, we find very strong constraints ruling out ekpyrosis from analysing the fast-roll conditions. We conclude that flux compactifications tend to provide potentials that are neither too flat and positive (inflation) nor too steep and negative (ekpyrosis).

Keywords

Strings and branes phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The ekpyrotic universe: Colliding branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    P.J. Steinhardt, N. Turok and N. Turok, A cyclic model of the universe, Science 296 (2002) 1436 [hep-th/0111030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J.K. Erickson, S. Gratton, P.J. Steinhardt and N. Turok, Cosmic perturbations through the cyclic ages, Phys. Rev. D 75 (2007) 123507 [hep-th/0607164] [INSPIRE].
  4. [4]
    J.-L. Lehners, Ekpyrotic and Cyclic Cosmology, Phys. Rept. 465 (2008) 223 [arXiv:0806.1245] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J.-L. Lehners, P.J. Steinhardt and N. Turok, The Return of the Phoenix Universe, Int. J. Mod. Phys. D 18 (2009) 2231 [arXiv:0910.0834] [INSPIRE].
  6. [6]
    J. Khoury and P.J. Steinhardt, Adiabatic Ekpyrosis: Scale-Invariant Curvature Perturbations from a Single Scalar Field in a Contracting Universe, Phys. Rev. Lett. 104 (2010) 091301 [arXiv:0910.2230] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.H. Lyth, The Primordial curvature perturbation in the ekpyrotic universe, Phys. Lett. B 524 (2002) 1 [hep-ph/0106153] [INSPIRE].
  8. [8]
    R. Brandenberger and F. Finelli, On the spectrum of fluctuations in an effective field theory of the Ekpyrotic universe, JHEP 11 (2001) 056 [hep-th/0109004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J.-c. Hwang, Cosmological structure problem in the ekpyrotic scenario, Phys. Rev. D 65 (2002) 063514 [astro-ph/0109045] [INSPIRE].
  10. [10]
    J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, Density perturbations in the ekpyrotic scenario, Phys. Rev. D 66 (2002) 046005 [hep-th/0109050] [INSPIRE].
  11. [11]
    D.H. Lyth, The failure of cosmological perturbation theory in the new ekpyrotic scenario, Phys. Lett. B 526 (2002) 173 [hep-ph/0110007] [INSPIRE].
  12. [12]
    S. Tsujikawa, Density perturbations in the ekpyrotic universe and string inspired generalizations, Phys. Lett. B 526 (2002) 179 [gr-qc/0110124] [INSPIRE].
  13. [13]
    A. Notari and A. Riotto, Isocurvature perturbations in the ekpyrotic universe, Nucl. Phys. B 644 (2002) 371 [hep-th/0205019] [INSPIRE].
  14. [14]
    S. Tsujikawa, R. Brandenberger and F. Finelli, On the construction of nonsingular pre-big bang and ekpyrotic cosmologies and the resulting density perturbations, Phys. Rev. D 66 (2002) 083513 [hep-th/0207228] [INSPIRE].
  15. [15]
    J.-L. Lehners, P. McFadden, N. Turok and P.J. Steinhardt, Generating ekpyrotic curvature perturbations before the big bang, Phys. Rev. D 76 (2007) 103501 [hep-th/0702153] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    E.I. Buchbinder, J. Khoury and B.A. Ovrut, New ekpyrotic cosmology, Phys. Rev. D 76 (2007) 123503 [hep-th/0702154] [INSPIRE].
  17. [17]
    K. Koyama, S. Mizuno and D. Wands, Curvature perturbations from ekpyrotic collapse with multiple fields, Class. Quant. Grav. 24 (2007) 3919 [arXiv:0704.1152] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    K. Koyama, S. Mizuno, F. Vernizzi and D. Wands, Non-Gaussianities from ekpyrotic collapse with multiple fields, JCAP 11 (2007) 024 [arXiv:0708.4321] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    E.I. Buchbinder, J. Khoury and B.A. Ovrut, Non-Gaussianities in new ekpyrotic cosmology, Phys. Rev. Lett. 100 (2008) 171302 [arXiv:0710.5172] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.-L. Lehners and P.J. Steinhardt, Non-Gaussian density fluctuations from entropically generated curvature perturbations in Ekpyrotic models, Phys. Rev. D 77 (2008) 063533 [Erratum ibid. D 79 (2009) 129903] [arXiv:0712.3779] [INSPIRE].
  21. [21]
    J.-L. Lehners and P.J. Steinhardt, Intuitive understanding of non-Gaussianity in ekpyrotic and cyclic models, Phys. Rev. D 78 (2008) 023506 [Erratum ibid. D 79 (2009) 129902] [arXiv:0804.1293] [INSPIRE].
  22. [22]
    S. Mizuno, K. Koyama, F. Vernizzi and D. Wands, Primordial non-Gaussianities in new ekpyrotic cosmology, AIP Conf. Proc. 1040 (2008) 121 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Linde, V. Mukhanov and A. Vikman, On adiabatic perturbations in the ekpyrotic scenario, JCAP 02 (2010) 006 [arXiv:0912.0944] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.-L. Lehners, Ekpyrotic Non-Gaussianity: A Review, Adv. Astron. 2010 (2010) 903907 [arXiv:1001.3125] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Li, Note on the production of scale-invariant entropy perturbation in the Ekpyrotic universe, Phys. Lett. B 724 (2013) 192 [arXiv:1306.0191] [INSPIRE].
  26. [26]
    L. Battarra and J.-L. Lehners, Quantum-to-classical transition for ekpyrotic perturbations, Phys. Rev. D 89 (2014) 063516 [arXiv:1309.2281] [INSPIRE].
  27. [27]
    A. Fertig, J.-L. Lehners and E. Mallwitz, Ekpyrotic Perturbations With Small Non-Gaussian Corrections, Phys. Rev. D 89 (2014) 103537 [arXiv:1310.8133] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Ijjas, J.-L. Lehners and P.J. Steinhardt, General mechanism for producing scale-invariant perturbations and small non-Gaussianity in ekpyrotic models, Phys. Rev. D 89 (2014) 123520 [arXiv:1404.1265] [INSPIRE].
  29. [29]
    A.M. Levy, A. Ijjas and P.J. Steinhardt, Scale-invariant perturbations in ekpyrotic cosmologies without fine-tuning of initial conditions, Phys. Rev. D 92 (2015) 063524 [arXiv:1506.01011] [INSPIRE].
  30. [30]
    A. Fertig and J.-L. Lehners, The non-minimal ekpyrotic trispectrum, JCAP 01 (2016) 026 [arXiv:1510.03439] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Ito and J. Soda, Primordial Gravitational Waves Induced by Magnetic Fields in an Ekpyrotic Scenario, Phys. Lett. B 771 (2017) 415 [arXiv:1607.07062] [INSPIRE].
  32. [32]
    S. Gratton, J. Khoury, P.J. Steinhardt and N. Turok, Conditions for generating scale-invariant density perturbations, Phys. Rev. D 69 (2004) 103505 [astro-ph/0301395] [INSPIRE].
  33. [33]
    J. Khoury, P.J. Steinhardt and N. Turok, Designing cyclic universe models, Phys. Rev. Lett. 92 (2004) 031302 [hep-th/0307132] [INSPIRE].
  34. [34]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on Type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].
  36. [36]
    K. Dasgupta, G. Rajesh and S. Sethi, M-theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
  38. [38]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  39. [39]
    G. Villadoro and F. Zwirner, N = 1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes, JHEP 06 (2005) 047 [hep-th/0503169] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    S. Sethi, Supersymmetry Breaking by Fluxes, arXiv:1709.03554 [INSPIRE].
  42. [42]
    J. McOrist and S. Sethi, M-theory and Type IIA Flux Compactifications, JHEP 12 (2012) 122 [arXiv:1208.0261] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, Supergravity algebras and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    E. Silverstein, Simple de Sitter Solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].
  45. [45]
    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards Classical de Sitter Solutions in String Theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    Eline Meeus, A nogo-theorem for Ekpyrosis from 10D supergravity, MSc Thesis, Katholieke Universiteit Leuven, Leuven Belgium (2016).Google Scholar
  47. [47]
    G.W. Gibbons, Aspects Of Supergravity Theories, at XV GIFT Seminar on Supersymmetry and Supergravity, Gerona Spain (1984), Print-85-0061, Cambridge U.K. (1984).Google Scholar
  48. [48]
    B. de Wit, D.J. Smit and N.D. Hari Dass, Residual Supersymmetry of Compactified D = 10 Supergravity, Nucl. Phys. B 283 (1987) 165 [INSPIRE].
  49. [49]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    C. Caviezel, T. Wrase and M. Zagermann, Moduli Stabilization and Cosmology of Type IIB on SU(2)-Structure Orientifolds, JHEP 04 (2010) 011 [arXiv:0912.3287] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    M. Koehn, J.-L. Lehners and B.A. Ovrut, Cosmological super-bounce, Phys. Rev. D 90 (2014) 025005 [arXiv:1310.7577] [INSPIRE].
  52. [52]
    T. Wrase and M. Zagermann, On Classical de Sitter Vacua in String Theory, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    G. Shiu and Y. Sumitomo, Stability Constraints on Classical de Sitter Vacua, JHEP 09 (2011) 052 [arXiv:1107.2925] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    T. Van Riet, On classical de Sitter solutions in higher dimensions, Class. Quant. Grav. 29 (2012) 055001 [arXiv:1111.3154] [INSPIRE].
  55. [55]
    D. Andriot, On classical de Sitter and Minkowski solutions with intersecting branes, JHEP 03 (2018) 054 [arXiv:1710.08886] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    D. Andriot, J. Blabäck and T. Van Riet, Minkowski flux vacua of type-II supergravities, Phys. Rev. Lett. 118 (2017) 011603 [arXiv:1609.00729] [INSPIRE].
  57. [57]
    S.R. Green, E.J. Martinec, C. Quigley and S. Sethi, Constraints on String Cosmology, Class. Quant. Grav. 29 (2012) 075006 [arXiv:1110.0545] [INSPIRE].
  58. [58]
    D. Kutasov, T. Maxfield, I. Melnikov and S. Sethi, Constraining de Sitter Space in String Theory, Phys. Rev. Lett. 115 (2015) 071305 [arXiv:1504.00056] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics, School of Science and TechnologyKwansei Gakuin UniversitySandaJapan

Personalised recommendations