Advertisement

Two-loop renormalization of the Faddeev-Popov ghosts in \( \mathcal{N}=1 \) supersymmetric gauge theories regularized by higher derivatives

  • A. E. Kazantsev
  • M. D. Kuzmichev
  • N. P. Meshcheriakov
  • S. V. Novgorodtsev
  • I. E. Shirokov
  • M. B. Skoptsov
  • K. V. StepanyantzEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

For the general renormalizable \( \mathcal{N}=1 \) supersymmetric gauge theory we investigate renormalization of the Faddeev-Popov ghosts using the higher covariant derivative regularization. First, we find the two-loop anomalous dimension defined in terms of the bare coupling constant in the general ξ-gauge. It is demonstrated that for doing this calculation one should take into account that the quantum gauge superfield is renormalized in a nonlinear way. Next, we obtain the two-loop anomalous dimension of the Faddeev-Popov ghosts defined in terms of the renormalized coupling constant and examine its dependence on the subtraction scheme.

Keywords

Renormalization Regularization and Renormalons Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.T. Grisaru, W. Siegel and M. Roček, Improved Methods for Supergraphs, Nucl. Phys. B 159 (1979) 429 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].
  3. [3]
    D.R.T. Jones, More on the Axial Anomaly in Supersymmetric Yang-Mills Theory, Phys. Lett. B 123 (1983) 45 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, β-function in Supersymmetric Gauge Theories: Instantons Versus Traditional Approach, Phys. Lett. B 166 (1986) 329 [INSPIRE].
  5. [5]
    M.A. Shifman and A.I. Vainshtein, Solution of the Anomaly Puzzle in SUSY Gauge Theories and the Wilson Operator Expansion, Nucl. Phys. B 277 (1986) 456 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.A. Shifman and A.I. Vainshtein, Instantons versus supersymmetry: Fifteen years later, in ITEP lectures on particle physics and field theory, vol. 2, (1999), pp. 485-647 [hep-th/9902018] [INSPIRE].
  7. [7]
    M.A. Shifman, Exact results in gauge theories: Putting supersymmetry to work. The 1999 Sakurai Prize Lecture, Int. J. Mod. Phys. A 14 (1999) 5017 [hep-th/9906049] [INSPIRE].
  8. [8]
    M. Shifman, Supersymmetric Tools in Yang-Mills Theories at Strong Coupling: the Beginning of a Long Journey, Int. J. Mod. Phys. A 33 (2018) 1830009 [arXiv:1804.01191] [INSPIRE].
  9. [9]
    D. Kutasov and A. Schwimmer, Lagrange multipliers and couplings in supersymmetric field theory, Nucl. Phys. B 702 (2004) 369 [hep-th/0409029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A.L. Kataev and K.V. Stepanyantz, The NSVZ β-function in supersymmetric theories with different regularizations and renormalization prescriptions, Theor. Math. Phys. 181 (2014) 1531 [arXiv:1405.7598] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].
  12. [12]
    W. Siegel, Inconsistency of Supersymmetric Dimensional Regularization, Phys. Lett. B 94 (1980) 37 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    I. Jack, D.R.T. Jones and C.G. North, N = 1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [INSPIRE].
  14. [14]
    I. Jack, D.R.T. Jones and C.G. North, Scheme dependence and the NSVZ β-function, Nucl. Phys. B 486 (1997) 479 [hep-ph/9609325] [INSPIRE].
  15. [15]
    I. Jack, D.R.T. Jones and A. Pickering, The Connection between DRED and NSVZ, Phys. Lett. B 435 (1998) 61 [hep-ph/9805482] [INSPIRE].
  16. [16]
    A.A. Slavnov, Invariant regularization of nonlinear chiral theories, Nucl. Phys. B 31 (1971) 301 [INSPIRE].
  17. [17]
    A.A. Slavnov, Invariant regularization of gauge theories, Theor. Math. Phys. 13 (1972) 1064 [Teor. Mat. Fiz. 13 (1972) 174] [INSPIRE].
  18. [18]
    A.A. Slavnov, The Pauli-Villars Regularization for Nonabelian Gauge Theories, Theor. Math. Phys. 33 (1977) 977 [Teor. Mat. Fiz. 33 (1977) 210] [INSPIRE].
  19. [19]
    V.K. Krivoshchekov, Invariant Regularizations for Supersymmetric Gauge Theories, Theor. Math. Phys. 36 (1978) 745 [Teor. Mat. Fiz. 36 (1978) 291] [INSPIRE].
  20. [20]
    P.C. West, Higher Derivative Regulation of Supersymmetric Theories, Nucl. Phys. B 268 (1986) 113 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A.L. Kataev and K.V. Stepanyantz, NSVZ scheme with the higher derivative regularization for \( \mathcal{N}= 1 \) SQED, Nucl. Phys. B 875 (2013) 459 [arXiv:1305.7094] [INSPIRE].
  22. [22]
    A.L. Kataev and K.V. Stepanyantz, Scheme independent consequence of the NSVZ relation for N = 1 SQED with N f flavors, Phys. Lett. B 730 (2014) 184 [arXiv:1311.0589] [INSPIRE].
  23. [23]
    K.V. Stepanyantz, Non-renormalization of the V cc-vertices in \( \mathcal{N}=1 \) supersymmetric theories, Nucl. Phys. B 909 (2016) 316 [arXiv:1603.04801] [INSPIRE].
  24. [24]
    A.E. Kazantsev, M.B. Skoptsov and K.V. Stepanyantz, One-loop polarization operator of the quantum gauge superfield for \( \mathcal{N}=1 \) SYM regularized by higher derivatives, Mod. Phys. Lett. A 32 (2017) 1750194 [arXiv:1709.08575] [INSPIRE].
  25. [25]
    A.L. Kataev, A.E. Kazantsev and K.V. Stepanyantz, The Adler D-function for \( \mathcal{N}=1 \) SQCD regularized by higher covariant derivatives in the three-loop approximation, Nucl. Phys. B 926 (2018) 295 [arXiv:1710.03941] [INSPIRE].
  26. [26]
    K.V. Stepanyantz, Structure of quantum corrections in \( \mathcal{N}=1 \) supersymmetric gauge theories, in 20th Workshop on What Comes Beyond the Standard Models?, Bled, Slovenia, July 9-17, 2017 [arXiv:1711.09194] [INSPIRE].
  27. [27]
    V.Yu. Shakhmanov and K.V. Stepanyantz, Three-loop NSVZ relation for terms quartic in the Yukawa couplings with the higher covariant derivative regularization, Nucl. Phys. B 920 (2017) 345 [arXiv:1703.10569] [INSPIRE].
  28. [28]
    A.E. Kazantsev, V.Y. Shakhmanov and K.V. Stepanyantz, New form of the exact NSVZ β-function: the three-loop verification for terms containing Yukawa couplings, JHEP 04 (2018) 130 [arXiv:1803.06612] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.W. Juer and D. Storey, Nonlinear Renormalization in Superfield Gauge Theories, Phys. Lett. B 119 (1982) 125 [INSPIRE].
  30. [30]
    J.W. Juer and D. Storey, One Loop Renormalization of Superfield Yang-Mills Theories, Nucl. Phys. B 216 (1983) 185 [INSPIRE].
  31. [31]
    O. Piguet and K. Sibold, Renormalization of N = 1 Supersymmetrical Yang-Mills Theories. 1. The Classical Theory, Nucl. Phys. B 197 (1982) 257 [INSPIRE].
  32. [32]
    O. Piguet and K. Sibold, Renormalization of N = 1 Supersymmetrical Yang-Mills Theories. 2. The Radiative Corrections, Nucl. Phys. B 197 (1982) 272 [INSPIRE].
  33. [33]
    O. Piguet and K. Sibold, The Supercurrent in N = 1 Supersymmetrical Yang-Mills Theories. 1. The Classical Case, Nucl. Phys. B 196 (1982) 428 [INSPIRE].
  34. [34]
    O. Piguet and K. Sibold, Gauge Independence in N = 1 Supersymmetric Yang-Mills Theories, Nucl. Phys. B 248 (1984) 301 [INSPIRE].
  35. [35]
    V.Yu. Shakhmanov and K.V. Stepanyantz, New form of the NSVZ relation at the two-loop level, Phys. Lett. B 776 (2018) 417 [arXiv:1711.03899] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A.A. Soloshenko and K.V. Stepanyantz, Three loop β-function for N = 1 supersymmetric electrodynamics, regularized by higher derivatives, Theor. Math. Phys. 140 (2004) 1264 [hep-th/0304083] [INSPIRE].
  37. [37]
    A.V. Smilga and A. Vainshtein, Background field calculations and nonrenormalization theorems in 4 − D supersymmetric gauge theories and their low-dimensional descendants, Nucl. Phys. B 704 (2005) 445 [hep-th/0405142] [INSPIRE].
  38. [38]
    S.S. Aleshin, A.L. Kataev and K.V. Stepanyantz, Structure of three-loop contributions to the β-function of \( \mathcal{N}=1 \) supersymmetric QED with N f flavors regularized by the dimensional reduction, JETP Lett. 103 (2016) 77 [arXiv:1511.05675] [INSPIRE].
  39. [39]
    S.S. Aleshin, I.O. Goriachuk, A.L. Kataev and K.V. Stepanyantz, The NSVZ scheme for \( \mathcal{N}=1 \) SQED with N f flavors, regularized by the dimensional reduction, in the three-loop approximation, Phys. Lett. B 764 (2017) 222 [arXiv:1610.08034] [INSPIRE].
  40. [40]
    K.V. Stepanyantz, Derivation of the exact NSVZ β-function in N = 1 SQED, regularized by higher derivatives, by direct summation of Feynman diagrams, Nucl. Phys. B 852 (2011) 71 [arXiv:1102.3772] [INSPIRE].
  41. [41]
    K.V. Stepanyantz, The NSVZ β-function and the Schwinger-Dyson equations for \( \mathcal{N}=1 \) SQED with N f flavors, regularized by higher derivatives, JHEP 08 (2014) 096 [arXiv:1404.6717] [INSPIRE].
  42. [42]
    S.L. Adler, Some Simple Vacuum Polarization Phenomenology: e + e Hadrons: The μ-Mesic Atom x-Ray Discrepancy and \( {g}_{{}^{\mu}}^{-2} \), Phys. Rev. D 10 (1974) 3714 [INSPIRE].
  43. [43]
    M. Shifman and K. Stepanyantz, Exact Adler Function in Supersymmetric QCD, Phys. Rev. Lett. 114 (2015) 051601 [arXiv:1412.3382] [INSPIRE].
  44. [44]
    M. Shifman and K.V. Stepanyantz, Derivation of the exact expression for the D function in N = 1 SQCD, Phys. Rev. D 91 (2015) 105008 [arXiv:1502.06655] [INSPIRE].
  45. [45]
    J. Hisano and M.A. Shifman, Exact results for soft supersymmetry breaking parameters in supersymmetric gauge theories, Phys. Rev. D 56 (1997) 5475 [hep-ph/9705417] [INSPIRE].
  46. [46]
    I. Jack and D.R.T. Jones, The Gaugino β-function, Phys. Lett. B 415 (1997) 383 [hep-ph/9709364] [INSPIRE].
  47. [47]
    L.V. Avdeev, D.I. Kazakov and I.N. Kondrashuk, Renormalizations in softly broken SUSY gauge theories, Nucl. Phys. B 510 (1998) 289 [hep-ph/9709397] [INSPIRE].
  48. [48]
    I.V. Nartsev and K.V. Stepanyantz, Exact renormalization of the photino mass in softly broken \( \mathcal{N}=1 \) SQED with N f flavors regularized by higher derivatives, JHEP 04 (2017) 047 [arXiv:1610.01280] [INSPIRE].
  49. [49]
    I.V. Nartsev and K.V. Stepanyantz, NSVZ-like scheme for the photino mass in softly broken \( \mathcal{N}=1 \) SQED regularized by higher derivatives, JETP Lett. 105 (2017) 69 [arXiv:1611.09091] [INSPIRE].
  50. [50]
    S.S. Aleshin, A.E. Kazantsev, M.B. Skoptsov and K.V. Stepanyantz, One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization, JHEP 05 (2016) 014 [arXiv:1603.04347] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.B. Pimenov, E.S. Shevtsova and K.V. Stepanyantz, Calculation of two-loop β-function for general N = 1 supersymmetric Yang-Mills theory with the higher covariant derivative regularization, Phys. Lett. B 686 (2010) 293 [arXiv:0912.5191] [INSPIRE].
  52. [52]
    K.V. Stepanyantz, Higher covariant derivative regularization for calculations in supersymmetric theories, Proc. Steklov Inst. Math. 272 (2011) 256.MathSciNetCrossRefGoogle Scholar
  53. [53]
    K.V. Stepanyantz, Factorization of integrals defining the two-loop β-function for the general renormalizable N = 1 SYM theory, regularized by the higher covariant derivatives, into integrals of double total derivatives, arXiv:1108.1491 [INSPIRE].
  54. [54]
    K.V. Stepanyantz, Derivation of the exact NSVZ β-function in N = 1 SQED regularized by higher derivatives by summation of Feynman diagrams, J. Phys. Conf. Ser. 343 (2012) 012115 [INSPIRE].
  55. [55]
    K.V. Stepanyantz, Multiloop calculations in supersymmetric theories with the higher covariant derivative regularization, J. Phys. Conf. Ser. 368 (2012) 012052 [arXiv:1203.5525] [INSPIRE].
  56. [56]
    A.E. Kazantsev and K.V. Stepanyantz, Relation between two-point Green’s functions of \( \mathcal{N}=1 \) SQED with N f flavors, regularized by higher derivatives, in the three-loop approximation, J. Exp. Theor. Phys. 120 (2015) 618 [arXiv:1410.1133] [INSPIRE].
  57. [57]
    I. Jack, D.R.T. Jones and L.A. Worthy, Renormalisation of supersymmetric gauge theory in the uneliminated component formalism, Phys. Rev. D 72 (2005) 107701 [hep-th/0509089] [INSPIRE].
  58. [58]
    L.D. Faddeev and A.A. Slavnov, Gauge fields. Introduction to quantum theory, Front. Phys. 50 (1980) 1 [INSPIRE].
  59. [59]
    K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Computation of the α s2 Correction Sigma-t (e + e Hadrons) in QCD, IYaI-P-0170.Google Scholar
  60. [60]
    P.I. Pronin and K. Stepanyantz, One loop counterterms for higher derivative regularized Lagrangians, Phys. Lett. B 414 (1997) 117 [hep-th/9707008] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    A. Soloshenko and K. Stepanyantz, Two loop renormalization of N = 1 supersymmetric electrodynamics, regularized by higher derivatives, hep-th/0203118 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations