On Bethe vectors in \( \mathfrak{g}{\mathfrak{l}}_3 \)-invariant integrable models

  • A. Liashyk
  • N. A. Slavnov
Open Access
Regular Article - Theoretical Physics


We consider quantum integrable models solvable by the nested algebraic Bethe ansatz and possessing \( \mathfrak{g}{\mathfrak{l}}_3 \)-invariant R-matrix. We study a new recently proposed approach to construct on-shell Bethe vectors of these models. We prove that the vectors constructed by this method are semi-on-shell Bethe vectors for arbitrary values of Bethe parameters. They thus do become on-shell vectors provided the system of Bethe equations is fulfilled.


Integrable Field Theories Lattice Integrable Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Gromov, F. Levkovich-Maslyuk and G. Sizov, New Construction of Eigenstates and Separation of Variables for SU(N) Quantum Spin Chains, JHEP 09 (2017) 111 [arXiv:1610.08032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H. Bethe, On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain, Z. Phys. 71 (1931) 205 [INSPIRE].
  3. [3]
    C.-N. Yang, Some exact results for the many body problems in one dimension with repulsive delta function interaction, Phys. Rev. Lett. 19 (1967) 1312 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B. Sutherland, Further Results for the Many-Body Problem in One Dimension, Phys. Rev. Lett. 20 (1968) 98 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    B. Sutherland, A General Model for Multicomponent Quantum Systems, Phys. Rev. B 12 (1975) 3795 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L.D. Faddeev, E.K. Sklyanin and L.A. Takhtajan, The Quantum Inverse Problem Method. 1 Theor. Math. Phys. 40 (1980) 688 [INSPIRE].
  7. [7]
    L.A. Takhtajan and L.D. Faddeev, The Quantum method of the inverse problem and the Heisenberg XYZ model, Russ. Math. Surveys 34 (1979) 11 [Usp. Math. Nauk 34 (1979) 13] [INSPIRE].
  8. [8]
    V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge (1993).Google Scholar
  9. [9]
    L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in Relativistic gravitation and gravitational radiation. Proceedings, School of Physics, Les Houches, France, September 26-October 6, 1995, pp. 149-219 [hep-th/9605187] [INSPIRE].
  10. [10]
    P.P. Kulish, Classical and quantum inverse problem method and generalized Bethe ansatz, Physica D 3 (1981) 246.Google Scholar
  11. [11]
    P.P. Kulish and N.Yu. Reshetikhin, GL 3 -invariant solutions of the Yang-Baxter equation and associated quantum systems, J. Sov. Math. 34 (1982) 1948 [Zap. Nauchn. Sem. POMI. 120 (1982) 92].Google Scholar
  12. [12]
    P.P. Kulish and N.Yu. Reshetikhin, Diagonalization of GL(N) invariant transfer matrices and quantum N -wave system (Lee model), J. Phys. A 16 (1983) L591 [INSPIRE].
  13. [13]
    V. Tarasov and A. Varchenko, Jackson integral representations for solutions of the quantized Knizhnik-Zamolodchikov equation, St. Petersburg Math. J. 6 (1995) 275 [Algebra i Analiz 6 (1994) 90] [hep-th/9311040] [INSPIRE].
  14. [14]
    V. Tarasov and A. Varchenko, Asymptotic solutions to the quantized Knizhnik-Zamolodchikov equation and Bethe vectors, hep-th/9406060 [INSPIRE].
  15. [15]
    V. Tarasov and A. Varchenko, Combinatorial formulae for nested Bethe vectors, SIGMA 9 (2013) 048 [math/0702277].
  16. [16]
    S. Belliard and É. Ragoucy, Nested Bethe ansatz for ‘all’ closed spin chains, J. Phys. A 41 (2008) 295202 [arXiv:0804.2822] [INSPIRE].
  17. [17]
    S. Pakuliak and S. Khoroshkin, The weight function for the quantum affine algebra \( {U}_q\left({\widehat{\mathfrak{sl}}}_3\right) \), Theor. Math. Phys. 145 (2005) 1373 [math/0610433].
  18. [18]
    S. Khoroshkin, S. Pakuliak and V. Tarasov, Off-shell Bethe vectors and Drinfeld currents, J. Geom. Phys. 57 (2007) 1713 [math/0610517].
  19. [19]
    S. Khoroshkin and S. Pakuliak, A computation of universal weight function for quantum affine algebra U q (gl N), J. Math. Kyoto Univ. 48 (2008) 277 [arXiv:0711.2819].
  20. [20]
    L. Frappat, S. Khoroshkin, S. Pakuliak and E. Ragoucy, Bethe Ansatz for the Universal Weight Function, Ann. Henri Poincaré 10 (2009) 513 [arXiv:0810.3135].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy and N.A. Slavnov, Current presentation for the double super-Yangian DY \( \left(\mathfrak{g}{\mathfrak{l}}_3\left(m\Big|n\right)\right) \) and Bethe vectors, Russ. Math. Surv. 72 (2017) 33, [arXiv:1611.09020].
  22. [22]
    E.K. Sklyanin, Functional Bethe Ansatz, in Integrable and Superintegrable Theories B. Kupershmidt ed., World Scientific, Singapore (1990), pp. 8-33.Google Scholar
  23. [23]
    E.K. Sklyanin, Quantum inverse scattering method. Selected topics, hep-th/9211111 [INSPIRE].
  24. [24]
    E.K. Sklyanin, Separation of variables — new trends, Prog. Theor. Phys. Suppl. 118 (1995) 35 [solv-int/9504001] [INSPIRE].
  25. [25]
    S. Belliard, S. Pakuliak, É. Ragoucy and N.A. Slavnov, Bethe vectors of GL(3)-invariant integrable models, J. Stat. Mech. 1302 (2013) P02020 [arXiv:1210.0768] [INSPIRE].
  26. [26]
    A. Molev, M. Nazarov and G. Olshansky, Yangians and classical Lie algebras, Russ. Math. Surveys 51 (1996) 205 [hep-th/9409025] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Molev, Yangians and Classical Lie Algebras, Mathematical Surveys and Monographs, vol. 143, American Mathematical Society, Providence, RI (2007).Google Scholar
  28. [28]
    A.G. Izergin and V.E. Korepin, A Lattice model related to the nonlinear Schrödinger equation, Dokl. Akad. Nauk Ser. Fiz. 259 (1981) 76 [INSPIRE].zbMATHGoogle Scholar
  29. [29]
    P.P. Kulish and E.K. Sklyanin, Quantum spectral transform method. Recent developments, in Integrable Quantum Field Theories, Lect. Notes Phys. 151 (1982) 61 [INSPIRE].
  30. [30]
    M. Nazarov and V. Tarasov, Representations of Yangians with Gelfand-Zetlin bases, J. Reine Angew. Math. 496 (1998) 181 [q-alg/9502008].
  31. [31]
    V.E. Korepin, Calculation of norms of Bethe wave functions, Commun. Math. Phys. 86 (1982) 391 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A.G. Izergin, Partition function of the six-vertex model in a finite volume, Sov. Phys. Dokl. 32 (1987) 878 [Dokl. Akad. Nauk SSSR 297 (1987) 331].Google Scholar
  33. [33]
    A. Gorsky, A. Zabrodin and A. Zotov, Spectrum of Quantum Transfer Matrices via Classical Many-Body Systems, JHEP 01 (2014) 070 [arXiv:1310.6958] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, É. Ragoucy and N.A. Slavnov, Scalar products of Bethe vectors in models with \( \mathfrak{g}{\mathfrak{l}}_3\left(2\Big|1\right) \) symmetry 2. Determinant representation, J. Phys. A 50 (2017) 034004 [arXiv:1606.03573] [INSPIRE].
  35. [35]
    E.H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. 1. The General solution and the ground state, Phys. Rev. 130 (1963) 1605 [INSPIRE].
  36. [36]
    E.H. Lieb, Exact Analysis of an Interacting Bose Gas. 2. The Excitation Spectrum, Phys. Rev. 130 (1963) 1616 [INSPIRE].
  37. [37]
    N.A. Slavnov, One-dimensional two-component Bose gas and the algebraic Bethe ansatz, Theor. Math. Phys. 183 (2015) 800 [arXiv:1502.06749].MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Belliard and N.A. Slavnov, A note on \( \mathfrak{g}{\mathfrak{l}}_2 \) -invariant Bethe vectors, JHEP 04 (2018) 031 [arXiv:1802.07576] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department for Theory of Nuclei and Quantum Field TheoryBogoliubov Institute for Theoretical Physics, NAS of UkraineKievUkraine
  2. 2.Faculty of MathematicsNational Research University Higher School of EconomicsMoscowRussia
  3. 3.Center for Advanced StudiesSkolkovo Institute of Science and TechnologyMoscowRussia
  4. 4.Theoretical Physics DepartmentSteklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations