Advertisement

Integrability in heavy quark effective theory

  • Vladimir M. Braun
  • Yao Ji
  • Alexander N. Manashov
Open Access
Regular Article - Theoretical Physics

Abstract

It was found that renormalization group equations in the heavy-quark effective theory (HQET) for the operators involving one effective heavy quark and light degrees of freedom are completely integrable in some cases and are related to spin chain models with the Hamiltonian commuting with the nondiagonal entry C(u) of the monodromy matrix. In this work we provide a more complete mathematical treatment of such spin chains in the QISM framework. We also discuss the relation of integrable models that appear in the HQET context with the large-spin limit of integrable models in QCD with light quarks. We find that the conserved charges and the “ground state” wave functions in HQET models can be obtained from the light-quark counterparts in a certain scaling limit.

Keywords

Lattice Integrable Models Renormalization Group Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [INSPIRE].
  2. [2]
    L.N. Lipatov, Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models, JETP Lett. 59 (1994) 596 [hep-th/9311037] [INSPIRE].ADSGoogle Scholar
  3. [3]
    L.D. Faddeev and G.P. Korchemsky, High-energy QCD as a completely integrable model, Phys. Lett. B 342 (1995) 311 [hep-th/9404173] [INSPIRE].
  4. [4]
    V.M. Braun, S.E. Derkachov and A.N. Manashov, Integrability of three particle evolution equations in QCD, Phys. Rev. Lett. 81 (1998) 2020 [hep-ph/9805225] [INSPIRE].
  5. [5]
    V.M. Braun, S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Baryon distribution amplitudes in QCD, Nucl. Phys. B 553 (1999) 355 [hep-ph/9902375] [INSPIRE].
  6. [6]
    A.V. Belitsky, Renormalization of twist-three operators and integrable lattice models, Nucl. Phys. B 574 (2000) 407 [hep-ph/9907420] [INSPIRE].
  7. [7]
    L.D. Faddeev, E.K. Sklyanin and L.A. Takhtajan, The Quantum Inverse Problem Method. 1, Theor. Math. Phys. 40 (1980) 688 [INSPIRE].
  8. [8]
    L.A. Takhtajan and L.D. Faddeev, The quantum method of the inverse problem and the Heisenberg XYZ model, Russ. Math. Surveys 34 (1979) 11 [INSPIRE].ADSGoogle Scholar
  9. [9]
    P.P. Kulish, N. Yu. Reshetikhin and E.K. Sklyanin, Yang-Baxter Equation and Representation Theory. 1., Lett. Math. Phys. 5 (1981) 393 [INSPIRE].
  10. [10]
    E.K. Sklyanin, Separation of variables: new trends, Prog. Theor. Phys. Suppl. 118 (1995) 35 [solv-int/9504001] [INSPIRE].
  11. [11]
    V.M. Braun, G.P. Korchemsky and A.N. Manashov, Evolution of twist-three parton distributions in QCD beyond the large N c limit, Phys. Lett. B 476 (2000) 455 [hep-ph/0001130] [INSPIRE].
  12. [12]
    H.J. De Vega and L.N. Lipatov, Interaction of reggeized gluons in the Baxter-Sklyanin representation, Phys. Rev. D 64 (2001) 114019 [hep-ph/0107225] [INSPIRE].
  13. [13]
    S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Noncompact Heisenberg spin magnets from high-energy QCD: 1. Baxter Q operator and separation of variables, Nucl. Phys. B 617 (2001) 375 [hep-th/0107193] [INSPIRE].
  14. [14]
    V.M. Braun, A.N. Manashov and J. Rohrwild, Renormalization of Twist-Four Operators in QCD, Nucl. Phys. B 826 (2010) 235 [arXiv:0908.1684] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 superYang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    V.M. Braun, S.E. Derkachov and A.N. Manashov, Integrability of the evolution equations for heavy-light baryon distribution amplitudes, Phys. Lett. B 738 (2014) 334 [arXiv:1406.0664] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    V.M. Braun, A.N. Manashov and N. Offen, Evolution equation for the higher-twist B-meson distribution amplitude, Phys. Rev. D 92 (2015) 074044 [arXiv:1507.03445] [INSPIRE].
  19. [19]
    V.M. Braun, Y. Ji and A.N. Manashov, Higher-twist B-meson Distribution Amplitudes in HQET, JHEP 05 (2017) 022 [arXiv:1703.02446] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    L.N. Lipatov, Integrability of scattering amplitudes in N = 4 SUSY, J. Phys. A 42 (2009) 304020 [arXiv:0902.1444] [INSPIRE].
  21. [21]
    B. Basso, Exciting the GKP string at any coupling, Nucl. Phys. B 857 (2012) 254 [arXiv:1010.5237] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Bartels, L.N. Lipatov and A. Prygarin, Integrable spin chains and scattering amplitudes, J. Phys. A 44 (2011) 454013 [arXiv:1104.0816] [INSPIRE].
  23. [23]
    A.V. Belitsky, OPE for null Wilson loops and open spin chains, Phys. Lett. B 709 (2012) 280 [arXiv:1110.1063] [INSPIRE].
  24. [24]
    G.P. Korchemsky and A.V. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].
  25. [25]
    B.O. Lange and M. Neubert, Renormalization group evolution of the B meson light cone distribution amplitude, Phys. Rev. Lett. 91 (2003) 102001 [hep-ph/0303082] [INSPIRE].
  26. [26]
    V.M. Braun, D. Yu. Ivanov and G.P. Korchemsky, The B meson distribution amplitude in QCD, Phys. Rev. D 69 (2004) 034014 [hep-ph/0309330] [INSPIRE].
  27. [27]
    M. Knodlseder and N. Offen, Renormalisation of heavy-light light ray operators, JHEP 10 (2011) 069 [arXiv:1105.4569] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    V.M. Braun and A.N. Manashov, Conformal symmetry of the Lange-Neubert evolution equation, Phys. Lett. B 731 (2014) 316 [arXiv:1402.5822] [INSPIRE].
  29. [29]
    A.P. Bukhvostov, G.V. Frolov, L.N. Lipatov and E.A. Kuraev, Evolution Equations for Quasi-Partonic Operators, Nucl. Phys. B 258 (1985) 601 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    I.M. Gelfand, M.I. Graev and N.Y. Vilenkin, Generalized functions, Vol. 5, AMS Chelsea Publishing, Providence, RI, U.S.A., (2016).Google Scholar
  31. [31]
    P. Ball, V.M. Braun and E. Gardi, Distribution Amplitudes of the Λb Baryon in QCD, Phys. Lett. B 665 (2008) 197 [arXiv:0804.2424] [INSPIRE].
  32. [32]
    W. Wang, Factorization of Heavy-to-Light Baryonic Transitions in SCET, Phys. Lett. B 708 (2012) 119 [arXiv:1112.0237] [INSPIRE].
  33. [33]
    A. Ali, C. Hambrock, A. Ya. Parkhomenko and W. Wang, Light-Cone Distribution Amplitudes of the Ground State Bottom Baryons in HQET, Eur. Phys. J. C 73 (2013) 2302 [arXiv:1212.3280] [INSPIRE].
  34. [34]
    E.K. Sklyanin, Quantum inverse scattering method. Selected topics, hep-th/9211111 [INSPIRE].
  35. [35]
    S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Separation of variables for the quantum SL(2, ℝ) spin chain, JHEP 07 (2003) 047 [hep-th/0210216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S.E. Derkachov and A.N. Manashov, Spin chains and Gustafson’s integrals, J. Phys. A 50 (2017) 294006 [arXiv:1611.09593] [INSPIRE].
  37. [37]
    S.E. Derkachov, Baxter’s Q-operator for the homogeneous XXX spin chain, J. Phys. A 32 (1999) 5299 [solv-int/9902015] [INSPIRE].
  38. [38]
    A.V. Belitsky, S.E. Derkachov and A.N. Manashov, Quantum mechanics of null polygonal Wilson loops, Nucl. Phys. B 882 (2014) 303 [arXiv:1401.7307] [INSPIRE].
  39. [39]
    S.E. Derkachov, Factorization of the R-matrix. I., math/0503396 [INSPIRE].
  40. [40]
    S.E. Derkachov, Factorization of R-matrix and Baxter’s Q-operator, J. Math. Sci. 151 (2008) 2848 [math/0507252] [INSPIRE].
  41. [41]
    E.K. Sklyanin, Boundary Conditions for Integrable Quantum Systems, J. Phys. A 21 (1988) 2375 [INSPIRE].
  42. [42]
    S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Baxter Q operator and separation of variables for the open SL(2, ℝ) spin chain, JHEP 10 (2003) 053 [hep-th/0309144] [INSPIRE].
  43. [43]
    S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Evolution equations for quark gluon distributions in multicolor QCD and open spin chains, Nucl. Phys. B 566 (2000) 203 [hep-ph/9909539] [INSPIRE].
  44. [44]
    V.M. Braun, G.P. Korchemsky and D. Mueller, The uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].
  45. [45]
    A.V. Belitsky, A.S. Gorsky and G.P. Korchemsky, Logarithmic scaling in gauge/string correspondence, Nucl. Phys. B 748 (2006) 24 [hep-th/0601112] [INSPIRE].
  46. [46]
    M. Beccaria and F. Catino, Large spin expansion of the long-range Baxter equation in the sl(2) sector of N = 4 SYM, JHEP 01 (2008) 067 [arXiv:0710.1991] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    A.V. Belitsky, Integrability and WKB solution of twist-three evolution equations, Nucl. Phys. B 558 (1999) 259 [hep-ph/9903512] [INSPIRE].
  48. [48]
    V.M. Braun, A.N. Manashov and B. Pirnay, Scale dependence of twist-three contributions to single spin asymmetries, Phys. Rev. D 80 (2009) 114002 [Erratum ibid. D 86 (2012) 119902] [arXiv:0909.3410] [INSPIRE].
  49. [49]
    Y. Ji and A.V. Belitsky, Renormalization of twist-four operators in light-cone gauge, Nucl. Phys. B 894 (2015) 161 [arXiv:1405.2828] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    V.M. Braun, A.N. Manashov and J. Rohrwild, Baryon Operators of Higher Twist in QCD and Nucleon Distribution Amplitudes, Nucl. Phys. B 807 (2009) 89 [arXiv:0806.2531] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany
  2. 2.Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  3. 3.St.Petersburg Department of Steklov Mathematical InstituteSt.PetersburgRussia

Personalised recommendations