Advertisement

Serendipity in dark photon searches

  • Philip Ilten
  • Yotam SoreqEmail author
  • Mike Williams
  • Wei Xue
Open Access
Regular Article - Theoretical Physics

Abstract

Searches for dark photons provide serendipitous discovery potential for other types of vector particles. We develop a framework for recasting dark photon searches to obtain constraints on more general theories, which includes a data-driven method for determining hadronic decay rates. We demonstrate our approach by deriving constraints on a vector that couples to the B-L current, a leptophobic B boson that couples directly to baryon number and to leptons via B-γ kinetic mixing, and on a vector that mediates a protophobic force. Our approach can easily be generalized to any massive gauge boson with vector couplings to the Standard Model fermions, and software to perform any such recasting is provided at https://gitlab.com/philten/darkcast.

Keywords

Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Essig et al., Working group report: new light weakly coupled particles, in the proceedings of the 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1311.0029 [INSPIRE].
  2. [2]
    J. Alexander et al., Dark Sectors 2016 workshop: community report, 2016, arXiv:1608.08632, http://inspirehep.net/record/1484628/files/arXiv:1608.08632.pdf [INSPIRE].
  3. [3]
    M. Battaglieri et al., US cosmic visions: new ideas in dark matter 2017: community report, arXiv:1707.04591 [INSPIRE].
  4. [4]
    L.B. Okun, Limits of electrodynamics: paraphotons?, Sov. Phys. JETP 56 (1982) 502 [INSPIRE].Google Scholar
  5. [5]
    P. Galison and A. Manohar, Two Z’s or not two Z’s?, Phys. Lett. 136B (1984) 279 [INSPIRE].
  6. [6]
    B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. 166B (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
  8. [8]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].
  9. [9]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].
  10. [10]
    CHARM collaboration, F. Bergsma et al., A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett. 166B (1986) 473 [INSPIRE].
  11. [11]
    A. Konaka et al., Search for neutral particles in electron beam dump experiment, Phys. Rev. Lett. 57 (1986) 659 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.D. Bjorken et al., Search for neutral metastable penetrating particles produced in the SLAC beam dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].
  14. [14]
    A. Bross et al., A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Davier and H. Nguyen Ngoc, An unambiguous search for a light Higgs boson, Phys. Lett. B 229 (1989) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    LSND collaboration, C. Athanassopoulos et al., Evidence for muon-neutrinoelectron-neutrino oscillations from pion decay in flight neutrinos, Phys. Rev. C 58 (1998) 2489 [nucl-ex/9706006] [INSPIRE].
  17. [17]
    NOMAD collaboration, P. Astier et al., Search for heavy neutrinos mixing with tau neutrinos, Phys. Lett. B 506 (2001) 27 [hep-ex/0101041] [INSPIRE].
  18. [18]
    R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering new light states at neutrino experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].
  19. [19]
    M. Williams, C.P. Burgess, A. Maharana and F. Quevedo, New constraints (and motivations) for abelian gauge bosons in the MeV-TeV mass range, JHEP 08 (2011) 106 [arXiv:1103.4556] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Blümlein and J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett. B 701 (2011) 155 [arXiv:1104.2747] [INSPIRE].
  21. [21]
    S.N. Gninenko, Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays, Phys. Lett. B 713 (2012) 244 [arXiv:1204.3583] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Blümlein and J. Brunner, New exclusion limits on dark gauge forces from proton bremsstrahlung in beam-dump data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].
  23. [23]
    NA64 collaboration, D. Banerjee et al., Search for a new X(16.7) boson and dark photons in the NA64 experiment at CERN, arXiv:1803.07748 [INSPIRE].
  24. [24]
    APEX collaboration, S. Abrahamyan et al., Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett. 107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].
  25. [25]
    H. Merkel et al., Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g − 2 anomaly, Phys. Rev. Lett. 112 (2014) 221802 [arXiv:1404.5502] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A1 collaboration, H. Merkel et al., Search for light gauge bosons of the dark sector at the Mainz Microtron, Phys. Rev. Lett. 106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].
  27. [27]
    BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar boson in radiative transitions ϒ → γA 0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].
  28. [28]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].
  29. [29]
    BaBar collaboration, J.P. Lees et al., Search for a dark photon in e + e collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  30. [30]
    BESIII collaboration, M. Ablikim et al., Dark photon search in the mass range between 1.5 and 3.4 GeV/c 2, Phys. Lett. B 774 (2017) 252 [arXiv:1705.04265] [INSPIRE].
  31. [31]
    LHCb collaboration, Search for dark photons produced in 13 TeV pp collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].
  32. [32]
    A. Anastasi et al., Limit on the production of a low-mass vector boson in e + e U γ, Ue + e with the KLOE experiment, Phys. Lett. B 750 (2015) 633 [arXiv:1509.00740] [INSPIRE].
  33. [33]
    G. Bernardi et al., Search for neutrino decay, Phys. Lett. 166B (1986) 479 [INSPIRE].
  34. [34]
    SINDRUM I collaboration, R. Meijer Drees et al., Search for weakly interacting neutral bosons produced in π p interactions at rest and decaying into e + e pairs., Phys. Rev. Lett. 68 (1992) 3845 [INSPIRE].
  35. [35]
    KLOE-2 collaboration, F. Archilli et al., Search for a vector gauge boson in φ meson decays with the KLOE detector, Phys. Lett. B 706 (2012) 251 [arXiv:1110.0411] [INSPIRE].
  36. [36]
    S.N. Gninenko, Stringent limits on the π 0γX, Xe + e decay from neutrino experiments and constraints on new light gauge bosons, Phys. Rev. D 85 (2012) 055027 [arXiv:1112.5438] [INSPIRE].
  37. [37]
    KLOE-2 collaboration, D. Babusci et al., Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector, Phys. Lett. B 720 (2013) 111 [arXiv:1210.3927] [INSPIRE].
  38. [38]
    WASA-at-COSY collaboration, P. Adlarson et al., Search for a dark photon in the π 0e + e γ decay, Phys. Lett. B 726 (2013) 187 [arXiv:1304.0671] [INSPIRE].
  39. [39]
    HADES collaboration, G. Agakishiev et al., Searching a dark photon with HADES, Phys. Lett. B 731 (2014) 265 [arXiv:1311.0216] [INSPIRE].
  40. [40]
    PHENIX collaboration, A. Adare et al., Search for dark photons from neutral meson decays in p + p and d + Au collisions at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Rev. C 91 (2015) 031901 [arXiv:1409.0851] [INSPIRE].
  41. [41]
    NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π 0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].
  42. [42]
    KLOE-2 collaboration, A. Anastasi et al., Limit on the production of a new vector boson in e + e U γ, Uπ + π with the KLOE experiment, Phys. Lett. B 757 (2016) 356 [arXiv:1603.06086] [INSPIRE].
  43. [43]
    R. Essig et al., Constraining light dark matter with low-energy e + e colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon g − 2, rare kaon decays and parity violation from dark bosons, Phys. Rev. D 89 (2014) 095006 [arXiv:1402.3620] [INSPIRE].
  45. [45]
    NA64 collaboration, D. Banerjee et al., Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett. 118 (2017) 011802 [arXiv:1610.02988] [INSPIRE].
  46. [46]
    BaBar collaboration, J.P. Lees et al., Search for invisible decays of a dark photon produced in e + e collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
  47. [47]
    E787 collaboration, S. Adler et al., Further evidence for the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \), Phys. Rev. Lett. 88 (2002) 041803 [hep-ex/0111091] [INSPIRE].
  48. [48]
    E787 collaboration, S. Adler et al., Further search for the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) in the momentum region P < 195 MeV/c, Phys. Rev. D 70 (2004) 037102 [hep-ex/0403034] [INSPIRE].
  49. [49]
    BNL-E949 collaboration, A.V. Artamonov et al., Study of the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) in the momentum region 140 < P π < 199 MeV/c, Phys. Rev. D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].
  50. [50]
    P. Fayet, Constraints on Light Dark Matter and U bosons, from ψ, ϒ, K + , π 0 , η and η decays, Phys. Rev. D 74 (2006) 054034 [hep-ph/0607318] [INSPIRE].
  51. [51]
    P. Fayet, U-boson production in e + e annihilations, ψ and ϒ decays and light dark matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].
  52. [52]
    P.J. Fox et al., LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].
  53. [53]
    R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A decaying to e + e , JHEP 02 (2011) 009 [arXiv:1001.2557] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Freytsis, G. Ovanesyan and J. Thaler, Dark force detection in low energy ep collisions, JHEP 01 (2010) 111 [arXiv:0909.2862] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    J. Balewski et al., DarkLight: a search for dark forces at the Jefferson Laboratory Free-Electron Laser Facility, arXiv:1307.4432 [INSPIRE].
  56. [56]
    B. Wojtsekhowski, D. Nikolenko and I. Rachek, Searching for a new force at VEPP-3, arXiv:1207.5089 [INSPIRE].
  57. [57]
    T. Beranek, H. Merkel and M. Vanderhaeghen, Theoretical framework to analyze searches for hidden light gauge bosons in electron scattering fixed target experiments, Phys. Rev. D 88 (2013) 015032 [arXiv:1303.2540] [INSPIRE].
  58. [58]
    B. Echenard, R. Essig and Y.-M. Zhong, Projections for dark photon searches at Mu3e, JHEP 01 (2015) 113 [arXiv:1411.1770] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Battaglieri et al., The heavy photon search test detector, Nucl. Instrum. Meth. A 777 (2015) 91 [arXiv:1406.6115] [INSPIRE].
  60. [60]
    S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Gardner, R.J. Holt and A.S. Tadepalli, New prospects in fixed target searches for dark forces with the SeaQuest experiment at Fermilab, Phys. Rev. D 93 (2016) 115015 [arXiv:1509.00050] [INSPIRE].
  62. [62]
    P. Ilten, J. Thaler, M. Williams and W. Xue, Dark photons from charm mesons at LHCb, Phys. Rev. D 92 (2015) 115017 [arXiv:1509.06765] [INSPIRE].
  63. [63]
    D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating dark photons with high-energy colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. He, X.-G. He and C.-K. Huang, Dark photon search at a circular e + e collider, Int. J. Mod. Phys. A 32 (2017) 1750138 [arXiv:1701.08614] [INSPIRE].
  65. [65]
    J. Kozaczuk, Dark photons from nuclear transitions, Phys. Rev. D 97 (2018) 015014 [arXiv:1708.06349] [INSPIRE].
  66. [66]
    P. Ilten, Y. Soreq, J. Thaler, M. Williams and W. Xue, Proposed inclusive dark photon search at LHCb, Phys. Rev. Lett. 116 (2016) 251803 [arXiv:1603.08926] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd search ExpeRiment at the LHC, Phys. Rev. D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].
  68. [68]
    M. Raggi and V. Kozhuharov, Proposal to search for a dark photon in positron on target collisions at DAΦNE Linac, Adv. High Energy Phys. 2014 (2014) 959802 [arXiv:1403.3041] [INSPIRE].
  69. [69]
    J. Alexander, MMAPS: Missing-Mass A-Prime Search, EPJ Web Conf. 142 (2017) 01001.Google Scholar
  70. [70]
    G. Barello, S. Chang and C.A. Newby, Correlated signals at the energy and intensity frontiers from non-Abelian kinetic mixing, Phys. Rev. D 94 (2016) 055018 [arXiv:1511.02865] [INSPIRE].
  71. [71]
    S. Cassel, D.M. Ghilencea and G.G. Ross, Electroweak and dark matter constraints on a Z in models with a hidden valley, Nucl. Phys. B 827 (2010) 256 [arXiv:0903.1118] [INSPIRE].
  72. [72]
    J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z -mediated dark matter and the galactic center γ ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].
  73. [73]
    J.A. Dror, R. Lasenby and M. Pospelov, Dark forces coupled to nonconserved currents, Phys. Rev. D 96 (2017) 075036 [arXiv:1707.01503] [INSPIRE].
  74. [74]
    J.A. Dror, R. Lasenby and M. Pospelov, New constraints on light vectors coupled to anomalous currents, Phys. Rev. Lett. 119 (2017) 141803 [arXiv:1705.06726] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A. Ismail and A. Katz, Anomalous Z and diboson resonances at the LHC, JHEP 04 (2018) 122 [arXiv:1712.01840] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Tulin, New weakly-coupled forces hidden in low-energy QCD, Phys. Rev. D 89 (2014) 114008 [arXiv:1404.4370] [INSPIRE].
  77. [77]
    T. Fujiwara et al., Nonabelian anomaly and vector mesons as dynamical gauge bosons of hidden local symmetries, Prog. Theor. Phys. 73 (1985) 926 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  79. [79]
    BaBar collaboration, J.P. Lees et al., Precise measurement of the e + e π + π (γ) cross section with the initial-state radiation method at BABAR, Phys. Rev. D 86 (2012) 032013 [arXiv:1205.2228] [INSPIRE].
  80. [80]
    BaBar collaboration, B. Aubert et al., Study of e + e π + π π 0 process using initial state radiation with BaBar, Phys. Rev. D 70 (2004) 072004 [hep-ex/0408078] [INSPIRE].
  81. [81]
    BaBar collaboration, J.P. Lees et al., Precision measurement of the e + e K + K (γ) cross section with the initial-state radiation method at BABAR, Phys. Rev. D 88 (2013) 032013 [arXiv:1306.3600] [INSPIRE].
  82. [82]
    BaBar collaboration, B. Aubert et al., Measurements of e + e K + K η, K + K π 0 and K s0 K ± π cross- sections using initial state radiation events, Phys. Rev. D 77 (2008) 092002 [arXiv:0710.4451] [INSPIRE].
  83. [83]
    BaBar collaboration, J.P. Lees et al., Initial-state radiation measurement of the e + e π + π π + π cross section, Phys. Rev. D 85 (2012) 112009 [arXiv:1201.5677] [INSPIRE].
  84. [84]
    BaBar collaboration, J.P. Lees et al., Measurement of the e + e π + π π 0 π 0 cross section using initial-state radiation at BABAR, Phys. Rev. D 96 (2017) 092009 [arXiv:1709.01171] [INSPIRE].
  85. [85]
    M.N. Achasov et al., Study of the process e + e π + π π 0 in the energy region s 1/2 below 0.98 GeV, Phys. Rev. D 68 (2003) 052006 [hep-ex/0305049] [INSPIRE].
  86. [86]
    M.N. Achasov et al., Study of the process e + e π + π π 0 in the energy region s 1/2 from 0.98 GeV to 1.38 GeV, Phys. Rev. D 66 (2002) 032001 [hep-ex/0201040] [INSPIRE].
  87. [87]
    J.L. Feng et al., Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev. D 95 (2017) 035017 [arXiv:1608.03591] [INSPIRE].
  88. [88]
    J. Heeck, Unbroken B-L symmetry, Phys. Lett. B 739 (2014) 256 [arXiv:1408.6845] [INSPIRE].
  89. [89]
    C. Fanelli and M. Williams, Photoproduction of leptophobic bosons, J. Phys. G 44 (2017) 014002 [arXiv:1605.07161] [INSPIRE].
  90. [90]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].
  91. [91]
    M. Endo, K. Hamaguchi and G. Mishima, Constraints on hidden photon models from electron g − 2 and hydrogen spectroscopy, Phys. Rev. D 86 (2012) 095029 [arXiv:1209.2558] [INSPIRE].
  92. [92]
    M. Bauer, P. Foldenauer and J. Jaeckel, Hunting all the hidden photons, arXiv:1803.05466 [INSPIRE].
  93. [93]
    LHCb collaboration, Search for hidden-sector bosons in B 0K ∗0 μ + μ decays, Phys. Rev. Lett. 115 (2015) 161802 [arXiv:1508.04094] [INSPIRE].
  94. [94]
    LHCb collaboration, Search for long-lived scalar particles in B +K + χ(μ + μ ) decays, Phys. Rev. D 95 (2017) 071101 [arXiv:1612.07818] [INSPIRE].
  95. [95]
    B.A. Dobrescu and C. Frugiuele, Hidden GeV-scale interactions of quarks, Phys. Rev. Lett. 113 (2014) 061801 [arXiv:1404.3947] [INSPIRE].
  96. [96]
    R. Harnik, J. Kopp and P.A.N. Machado, Exploring ν signals in dark matter detectors, JCAP 07 (2012) 026 [arXiv:1202.6073] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].
  98. [98]
    TEXONO collaboration, M. Deniz et al., Measurement of \( {\overline{\nu}}_e-e \) scattering cross-section with a CsI(Tl) scintillating crystal array at the Kuo-Sheng nuclear power reactor, Phys. Rev. D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].
  99. [99]
    CHARM-II collaboration, P. Vilain et al., Measurement of differential cross-sections for muon-neutrino electron scattering, Phys. Lett. B 302 (1993) 351 [INSPIRE].
  100. [100]
    C. Frugiuele, E. Fuchs, G. Perez and M. Schlaffer, Constraining new physics models with isotope shift spectroscopy, Phys. Rev. D 96 (2017) 015011 [arXiv:1602.04822] [INSPIRE].
  101. [101]
    E.D. Carlson, Limits on a new U(1) coupling, Nucl. Phys. B 286 (1987) 378 [INSPIRE].
  102. [102]
    A. Aranda and C.D. Carone, Limits on a light leptophobic gauge boson, Phys. Lett. B 443 (1998) 352 [hep-ph/9809522] [INSPIRE].
  103. [103]
    ARGUS collaboration, H. Albrecht et al., An upper limit for two jet production in Direct ϒ(1s) decays, Z. Phys. C 31 (1986) 181 [INSPIRE].
  104. [104]
    S. Prakhov et al., Measurement of the invariant-mass spectrum for the two photons from the ηπ 0 γγ decay, Phys. Rev. C 78 (2008) 015206 [INSPIRE].
  105. [105]
    Belle collaboration, J. Grygier et al., Search for \( B\to h\nu \overline{\nu} \) decays with semileptonic tagging at Belle, Phys. Rev. D 96 (2017) 091101 [arXiv:1702.03224] [INSPIRE].
  106. [106]
    KTeV collaboration, A. Alavi-Harati et al., Search for the rare decay K(L) → π 0 e + e , Phys. Rev. Lett. 93 (2004) 021805 [hep-ex/0309072] [INSPIRE].
  107. [107]
    E949 collaboration, A.V. Artamonov et al., New measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].
  108. [108]
    L3 collaboration, M. Acciarri et al., Search for new physics in energetic single photon production in e + e annihilation at the Z resonance, Phys. Lett. B 412 (1997) 201 [INSPIRE].
  109. [109]
    DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].
  110. [110]
    NA64 collaboration, D. Banerjee et al., Search for vector mediator of Dark Matter production in invisible decay mode, Phys. Rev. D 97 (2018) 072002 [arXiv:1710.00971] [INSPIRE].
  111. [111]
    P. Fayet, Extra U(1)’s and new forces, Nucl. Phys. B 347 (1990) 743 [INSPIRE].
  112. [112]
    M.D. Campos et al., Neutrino masses and absence of flavor changing interactions in the 2HDM from gauge principles, JHEP 08 (2017) 092 [arXiv:1705.05388] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    Y. Kahn, G. Krnjaic, S. Mishra-Sharma and T.M.P. Tait, Light weakly coupled axial forces: models, constraints and projections, JHEP 05 (2017) 002 [arXiv:1609.09072] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  114. [114]
    U. Haisch and J.F. Kamenik, Searching for new spin-0 resonances at LHCb, Phys. Rev. D 93 (2016) 055047 [arXiv:1601.05110] [INSPIRE].
  115. [115]
    T. Feldmann, Quark structure of pseudoscalar mesons, Int. J. Mod. Phys. A 15 (2000) 159 [hep-ph/9907491] [INSPIRE].
  116. [116]
    DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].
  117. [117]
    DELPHI collaboration, J. Abdallah et al., Search for one large extra dimension with the DELPHI detector at LEP, Eur. Phys. J. C 60 (2009) 17 [arXiv:0901.4486] [INSPIRE].
  118. [118]
    S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].
  119. [119]
    J. Blumlein et al., Limits on neutral light scalar and pseudoscalar particles in a proton beam dump experiment, Z. Phys. C 51 (1991) 341 [INSPIRE].
  120. [120]
    J. Blumlein et al., Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e + e and μ + μ pair production in a proton-iron beam dump experiment, Int. J. Mod. Phys. A 7 (1992) 3835 [INSPIRE].
  121. [121]
    CHARM collaboration, F. Bergsma et al., Search for axion like particle production in 400 GeV proton-copper interactions, Phys. Lett. B 157 (1985) 458.Google Scholar
  122. [122]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  123. [123]
    NA60 collaboration, R. Arnaldi et al., Precision study of the ημ + μ γ and ωμ + μ π 0 electromagnetic transition form-factors and of the ρμ + μ line shape in NA60, Phys. Lett. B 757 (2016) 437 [arXiv:1608.07898] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Philip Ilten
    • 1
  • Yotam Soreq
    • 2
    Email author
  • Mike Williams
    • 3
  • Wei Xue
    • 4
  1. 1.School of Physics and AstronomyUniversity of BirminghamBirminghamU.K.
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  3. 3.Laboratory for Nuclear ScienceMassachusetts Institute of TechnologyCambridgeU.S.A.
  4. 4.Theoretical Physics Department, CERNGeneva 23Switzerland

Personalised recommendations