New physics in multi-Higgs boson final states

  • Wolfgang Kilian
  • Sichun Sun
  • Qi-Shu Yan
  • Xiaoran Zhao
  • Zhijie Zhao
Open Access
Regular Article - Theoretical Physics


We explore the potential for the discovery of the triple-Higgs signal in the Open image in new window decay channel at a 100 TeV hadron collider. We consider both the Standard Model and generic new-physics contributions, described by an effective Lagrangian that includes higher-dimensional operators. The selected subset of operators is motivated by composite-Higgs and Higgs-inflation models. In the Standard Model, we perform both a parton-level and a detector-level analysis. Although the parton-level results are encouraging, the detector-level results demonstrate that this mode is really challenging. However, sizable contributions from new effective operators can largely increase the cross section and/or modify the kinematics of the Higgs bosons in the final state. Taking into account the projected constraints from single and double Higgs-boson production, we propose benchmark points in the new physics models for the measurement of the triple-Higgs boson final state for future collider projects.


Beyond Standard Model Effective Field Theories Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    S. Dawson et al., Working group report: Higgs boson, arXiv:1310.8361 [INSPIRE].
  4. [4]
    M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479] [INSPIRE].
  5. [5]
    J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker and A. Riotto, The probable fate of the Standard Model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E.A.R. Rojas, The Higgs boson at LHC and the vacuum stability of the Standard Model, arXiv:1511.03651 [INSPIRE].
  8. [8]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  9. [9]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Degrande, J.M. Gerard, C. Grojean, F. Maltoni and G. Servant, Probing top-Higgs non-standard interactions at the LHC, JHEP 07 (2012) 036 [Erratum ibid. 03 (2013) 032] [arXiv:1205.1065] [INSPIRE].
  13. [13]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  14. [14]
    R. Contino, M. Ghezzi, C. Grojean, M.M. Mühlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    H.-J. He, J. Ren and W. Yao, Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders, Phys. Rev. D 93 (2016) 015003 [arXiv:1506.03302] [INSPIRE].
  16. [16]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
  18. [18]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].
  19. [19]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
  20. [20]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].
  21. [21]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. de Florian and J. Mazzitelli, Higgs boson pair production at next-to-next-to-leading order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Degrassi, P.P. Giardino and R. Gröber, On the two-loop virtual QCD corrections to Higgs boson pair production in the Standard Model, Eur. Phys. J. C 76 (2016) 411 [arXiv:1603.00385] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. de Florian et al., Differential Higgs boson pair production at next-to-next-to-leading order in QCD, JHEP 09 (2016) 151 [arXiv:1606.09519] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. de Florian and J. Mazzitelli, Two-loop corrections to the triple Higgs boson production cross section, JHEP 02 (2017) 107 [arXiv:1610.05012] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  28. [28]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    J. Grigo, J. Hoff and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO and NNLO, Nucl. Phys. B 900 (2015) 412 [arXiv:1508.00909] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S. Borowka et al., Higgs boson pair production in gluon fusion at next-to-leading order with full top-quark mass dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid. 117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
  32. [32]
    S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655 [hep-ph/9603205] [INSPIRE].
  34. [34]
    U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [INSPIRE].
  35. [35]
    J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Q. Li, Q.-S. Yan and X. Zhao, Higgs pair production: improved description by matrix element matching, Phys. Rev. D 89 (2014) 033015 [arXiv:1312.3830] [INSPIRE].
  37. [37]
    B. Bhattacherjee and A. Choudhury, Role of supersymmetric heavy Higgs boson production in the self-coupling measurement of 125 GeV Higgs boson at the LHC, Phys. Rev. D 91 (2015) 073015 [arXiv:1407.6866] [INSPIRE].
  38. [38]
    U. Baur, T. Plehn and D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders, Phys. Rev. D 67 (2003) 033003 [hep-ph/0211224] [INSPIRE].
  39. [39]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].
  40. [40]
    F. Kling, T. Plehn and P. Schichtel, Maximizing the significance in Higgs boson pair analyses, Phys. Rev. D 95 (2017) 035026 [arXiv:1607.07441] [INSPIRE].
  41. [41]
    W. Yao, Studies of measuring Higgs self-coupling with \( HH\to b\overline{b}\gamma \gamma \) at the future hadron colliders, arXiv:1308.6302 [INSPIRE].
  42. [42]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}W+W- \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].
  43. [43]
    U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].
  44. [44]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2ed — selecting hh events at the high luminosity LHC, Phys. Lett. B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    L.-C. Lü, C. Du, Y. Fang, H.-J. He and H. Zhang, Searching heavier Higgs boson via di-Higgs production at LHC run-2, Phys. Lett. B 755 (2016) 509 [arXiv:1507.02644] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard Model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    J.K. Behr, D. Bortoletto, J.A. Frost, N.P. Hartland, C. Issever and J. Rojo, Boosting Higgs pair production in the \( b\overline{b}b\overline{b} \) final state with multivariate techniques, Eur. Phys. J. C 76 (2016) 386 [arXiv:1512.08928] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-pair production and measurement of the triscalar coupling at LHC(8, 14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    ATLAS collaboration, Projected sensitivity to non-resonant Higgs boson pair production in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at HL-LHC with the ATLAS detector, ATL-PHYS-PUB-2016-024, CERN, Geneva Switzerland, (2016).
  51. [51]
    Future Circular Collider Study (FCC) webpage,
  52. [52]
    Circular Electron Positron Collider (CEPC) webpage,
  53. [53]
    A.J. Barr, M.J. Dolan, C. Englert, D.E. Ferreira de Lima and M. Spannowsky, Higgs self-coupling measurements at a 100 TeV hadron collider, JHEP 02 (2015) 016 [arXiv:1412.7154] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Papaefstathiou, Discovering Higgs boson pair production through rare final states at a 100 TeV collider, Phys. Rev. D 91 (2015) 113016 [arXiv:1504.04621] [INSPIRE].ADSGoogle Scholar
  55. [55]
    Q. Li, Z. Li, Q.-S. Yan and X. Zhao, Probe Higgs boson pair production via the Open image in new window mode, Phys. Rev. D 92 (2015) 014015 [arXiv:1503.07611] [INSPIRE].
  56. [56]
    X. Zhao, Q. Li, Z. Li and Q.-S. Yan, Discovery potential of Higgs boson pair production through Open image in new window final states at a 100 TeV collider, Chin. Phys. C 41 (2017) 023105 [arXiv:1604.04329] [INSPIRE].
  57. [57]
    R. Contino et al., Physics at a 100 TeV pp collider: higgs and EW symmetry breaking studies, arXiv:1606.09408 [INSPIRE].
  58. [58]
    K. Fujii et al., Physics case for the International Linear Collider, arXiv:1506.05992 [INSPIRE].
  59. [59]
    M. McCullough, An indirect model-dependent probe of the Higgs self-coupling, Phys. Rev. D 90 (2014) 015001 [Erratum ibid. D 92 (2015) 039903] [arXiv:1312.3322] [INSPIRE].
  60. [60]
    S. Sun, Large two-loop effects in the Higgs sector as new physics probes, arXiv:1510.02309 [INSPIRE].
  61. [61]
    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].
  62. [62]
    T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].
  63. [63]
    D.A. Dicus, C. Kao and W.W. Repko, Self coupling of the Higgs boson in the processes ppZHHH + X and ppW HHH + X, Phys. Rev. D 93 (2016) 113003 [arXiv:1602.05849] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. Djouadi, W. Kilian, M.M. Mühlleitner and P.M. Zerwas, Testing Higgs selfcouplings at e+elinear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [INSPIRE].
  65. [65]
    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A. Papaefstathiou and K. Sakurai, Triple Higgs boson production at a 100 TeV proton-proton collider, JHEP 02 (2016) 006 [arXiv:1508.06524] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    C.-Y. Chen, Q.-S. Yan, X. Zhao, Y.-M. Zhong and Z. Zhao, Probing triple-Higgs productions via 4b2γ decay channel at a 100 TeV hadron collider, Phys. Rev. D 93 (2016) 013007 [arXiv:1510.04013] [INSPIRE].
  68. [68]
    B. Fuks, J.H. Kim and S.J. Lee, Probing Higgs self-interactions in proton-proton collisions at a center-of-mass energy of 100 TeV, Phys. Rev. D 93 (2016) 035026 [arXiv:1510.07697] [INSPIRE].
  69. [69]
    C.P. Burgess and D. London, Light spin one particles imply gauge invariance, hep-ph/9203215 [INSPIRE].
  70. [70]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].
  71. [71]
    G. Buchalla, O. Catà and C. Krause, A systematic approach to the SILH Lagrangian, Nucl . Phys. B 894 (2015) 602 [arXiv:1412.6356] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].
  73. [73]
    H. Khanpour and M. Mohammadi Najafabadi, Constraining Higgs boson effective couplings at electron-positron colliders, Phys. Rev. D 95 (2017) 055026 [arXiv:1702.00951] [INSPIRE].
  74. [74]
    ATLAS collaboration, Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the Hγγ decay channel at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 753 (2016) 69 [arXiv:1508.02507] [INSPIRE].
  75. [75]
    J. Ellis, V. Sanz and T. You, The effective Standard Model after LHC run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].CrossRefGoogle Scholar
  76. [76]
    C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs coupling measurements at the LHC, Eur. Phys. J. C 76 (2016) 393 [arXiv:1511.05170] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new physics scales from Higgs and electroweak observables at e + e Higgs factory, JHEP 10 (2016) 007 [arXiv:1603.03385] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    S. Kanemura, K. Kaneta, N. Machida and T. Shindou, New resonance scale and fingerprint identification in minimal composite Higgs models, Phys. Rev. D 91 (2015) 115016 [arXiv:1410.8413] [INSPIRE].ADSGoogle Scholar
  79. [79]
    M. Carena, L. Da Rold and E. Pontón, Minimal composite Higgs models at the LHC, JHEP 06 (2014) 159 [arXiv:1402.2987] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    S. Kanemura, K. Kaneta, N. Machida, S. Odori and T. Shindou, Single and double production of the Higgs boson at hadron and lepton colliders in minimal composite Higgs models, Phys. Rev. D 94 (2016) 015028 [arXiv:1603.05588] [INSPIRE].
  81. [81]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  83. [83]
    M. Gillioz, R. Gröber, C. Grojean, M.M. Mühlleitner and E. Salvioni, Higgs low-energy theorem (and its corrections) in composite models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    Y. Hamada, T. Noumi, S. Sun and G. Shiu, An O(750) GeV resonance and inflation, Phys. Rev. D 93 (2016) 123514 [arXiv:1512.08984] [INSPIRE].ADSGoogle Scholar
  87. [87]
    S. Sun, D.B. Kaplan and A.E. Nelson, Little flavor: a model of weak-scale flavor physics, Phys. Rev. D 87 (2013) 125036 [arXiv:1303.1811] [INSPIRE].ADSGoogle Scholar
  88. [88]
    S. Sun, Little flavor: heavy leptons, Z and Higgs phenomenology, arXiv:1411.0131 [INSPIRE].
  89. [89]
    R. Brock et al., Planning the future of U.S. particle physics (Snowmass 2013) — chapter 3: energy frontier, arXiv:1401.6081 [INSPIRE].
  90. [90]
    M.L. Mangano, T. Plehn, P. Reimitz, T. Schell and H.-S. Shao, Measuring the top Yukawa coupling at 100 TeV, J. Phys. G 43 (2016) 035001 [arXiv:1507.08169] [INSPIRE].
  91. [91]
    N. Craig, M. Farina, M. McCullough and M. Perelstein, Precision Higgsstrahlung as a probe of new physics, JHEP 03 (2015) 146 [arXiv:1411.0676] [INSPIRE].CrossRefGoogle Scholar
  92. [92]
    R. Pittau, Status of MadLoop/aMC@NLO, arXiv:1202.5781 [INSPIRE].
  93. [93]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  94. [94]
    K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons — manual for version 2.5.0, arXiv:1107.4038 [INSPIRE].
  96. [96]
    J. Baglio et al., Release note — VBFNLO 2.7.0, arXiv:1404.3940 [INSPIRE].
  97. [97]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections, Phys. Rev. D 68 (2003) 034022 [hep-ph/0305087] [INSPIRE].
  100. [100]
    F. Maltoni, D. Pagani and I. Tsinikos, Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on \( t\overline{t}H \) searches at the LHC, JHEP 02 (2016) 113 [arXiv:1507.05640] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  102. [102]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    M.J. Dolan, C. Englert, N. Greiner, K. Nordstrom and M. Spannowsky, hhjj production at the LHC, Eur. Phys. J. C 75 (2015) 387 [arXiv:1506.08008] [INSPIRE].
  104. [104]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].
  105. [105]
    J. Bellm et al., Anomalous coupling, top-mass and parton-shower effects in W + W production, JHEP 05 (2016) 106 [arXiv:1602.05141] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].
  107. [107]
    A. Barr, C. Lester and P. Stephens, m T 2 : the truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].
  108. [108]
    A.J. Barr and C.G. Lester, A review of the mass measurement techniques proposed for the Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    A.J. Barr et al., Guide to transverse projections and mass-constraining variables, Phys. Rev. D 84 (2011) 095031 [arXiv:1105.2977] [INSPIRE].
  110. [110]
    W.S. Cho et al., On-shell constrained M 2 variables with applications to mass measurements and topology disambiguation, JHEP 08 (2014) 070 [arXiv:1401.1449] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  112. [112]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  114. [114]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  115. [115]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  116. [116]
    W. Kilian, T. Ohl, J. Reuter and M. Sekulla, High-energy vector boson scattering after the Higgs discovery, Phys. Rev. D 91 (2015) 096007 [arXiv:1408.6207] [INSPIRE].
  117. [117]
    W. Kilian, T. Ohl, J. Reuter and M. Sekulla, Resonances at the LHC beyond the Higgs boson: the scalar/tensor case, Phys. Rev. D 93 (2016) 036004 [arXiv:1511.00022] [INSPIRE].
  118. [118]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  119. [119]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  120. [120]
    P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  121. [121]
    C. Degrande, Automatic evaluation of UV and R 2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  122. [122]
    Higgs cross sections working group webpage,
  123. [123]
    ILC physics and detector study collaboration, J. Tian and K. Fujii, Measurement of Higgs boson couplings at the International Linear Collider, Nucl. Part. Phys. Proc. 273-275 (2016) 826 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Wolfgang Kilian
    • 1
  • Sichun Sun
    • 2
    • 3
  • Qi-Shu Yan
    • 4
    • 5
  • Xiaoran Zhao
    • 6
  • Zhijie Zhao
    • 1
  1. 1.Department of PhysicsUniversity of SiegenSiegenGermany
  2. 2.Jockey Club Institute for Advanced StudyHong Kong University of Science and TechnologyClear Water BayHong Kong
  3. 3.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  4. 4.School of Physics SciencesUniversity of Chinese Academy of SciencesBeijingChina
  5. 5.Center for future high energy physicsChinese Academy of SciencesBeijingChina
  6. 6.Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations