Advertisement

Updated global 3+1 analysis of short-baseline neutrino oscillations

  • S. Gariazzo
  • C. GiuntiEmail author
  • M. Laveder
  • Y. F. Li
Open Access
Regular Article - Theoretical Physics

Abstract

We present the results of an updated fit of short-baseline neutrino oscillation data in the framework of 3+1 active-sterile neutrino mixing. We first consider ν e and \( {\overline{\nu}}_e \) disappearance in the light of the Gallium and reactor anomalies. We discuss the implications of the recent measurement of the reactor \( {\overline{\nu}}_e \) spectrum in the NEOS experiment, which shifts the allowed regions of the parameter space towards smaller values of |U e4|2. The β-decay constraints of the Mainz and Troitsk experiments allow us to limit the oscillation length between about 2 cm and 7 m at 3σ for neutrinos with an energy of 1 MeV. The corresponding oscillations can be discovered in a model-independent way in ongoing reactor and source experiments by measuring ν e and \( {\overline{\nu}}_e \) disappearance as a function of distance. We then consider the global fit of the data on short-baseline \( {}_{\nu_{\mu}}^{\left(-\right)}{\to}_{\nu_e}^{\left(-\right)} \) transitions in the light of the LSND anomaly, taking into account the constraints from \( {}_{\nu_e}^{\left(-\right)} \) and \( {}_{\nu_{\mu}}^{\left(-\right)} \) disappearance experiments, including the recent data of the MINOS and IceCube experiments. The combination of the NEOS constraints on |U e4|2 and the MINOS and IceCube constraints on |U μ4|2 lead to an unacceptable appearance-disappearance tension which becomes tolerable only in a pragmatic fit which neglects the MiniBooNE low-energy anomaly. The minimization of the global χ 2 in the space of the four mixing parameters Δm 41 2 , |U e4|2, |U μ4|2, and |U τ4|2 leads to three allowed regions with narrow Δm 41 2 widths at Δm 41 2  ≈ 1.7 (best-fit), 1.3 (at 2σ), 2.4 (at 3σ) eV2. The effective amplitude of short-baseline \( {}_{\nu_{\mu}}^{\left(-\right)}{\to}_{\nu_e}^{\left(-\right)} \) oscillations is limited by 0.00048 ≲ sin2 2ϑ ≲ 0.0020 at 3σ. The restrictions of the allowed regions of the mixing parameters with respect to our previous global fits are mainly due to the NEOS constraints. We present a comparison of the allowed regions of the mixing parameters with the sensitivities of ongoing experiments, which show that it is likely that these experiments will determine in a definitive way if the reactor, Gallium and LSND anomalies are due to active-sterile neutrino oscillations or not.

Keywords

Neutrino Physics Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    LSND collaboration, C. Athanassopoulos et al., Candidate events in a search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations, Phys. Rev. Lett. 75 (1995) 2650 [nucl-ex/9504002] [INSPIRE].
  2. [2]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  3. [3]
    J.N. Abdurashitov et al., Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source, Phys. Rev. C 73 (2006) 045805 [nucl-ex/0512041] [INSPIRE].
  4. [4]
    M. Laveder, Unbound neutrino roadmaps, Nucl. Phys. Proc. Suppl. 168 (2007) 344 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Giunti and M. Laveder, Short-baseline active-sterile neutrino oscillations?, Mod. Phys. Lett. A 22 (2007) 2499 [hep-ph/0610352] [INSPIRE].
  6. [6]
    C. Giunti and M. Laveder, Statistical significance of the Gallium anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C. Giunti, M. Laveder, Y.F. Li, Q.Y. Liu and H.W. Long, Update of short-baseline electron neutrino and antineutrino disappearance, Phys. Rev. D 86 (2012) 113014 [arXiv:1210.5715] [INSPIRE].ADSGoogle Scholar
  8. [8]
    G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.M. Bilenky, C. Giunti and W. Grimus, Phenomenology of neutrino oscillations, Prog. Part. Nucl. Phys. 43 (1999) 1 [hep-ph/9812360] [INSPIRE].
  10. [10]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.M. Conrad et al., Sterile neutrino fits to short baseline neutrino oscillation measurements, Adv. High Energy Phys. 2013 (2013) 163897 [arXiv:1207.4765] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li and E.M. Zavanin, Light sterile neutrinos, J. Phys. G 43 (2016) 033001 [arXiv:1507.08204] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 [hep-ph/0405172] [INSPIRE].
  14. [14]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  15. [15]
    S.M. Bilenky and C. Giunti, Neutrinoless double-beta decay: a probe of physics beyond the standard model, Int. J. Mod. Phys. A 30 (2015) 1530001 [arXiv:1411.4791] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, Adv. High Energy Phys. 2016 (2016) 2162659 [arXiv:1601.07512] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    C. Giunti and E.M. Zavanin, Appearance-disappearance relation in 3 + N s short-baseline neutrino oscillations, Mod. Phys. Lett. A 31 (2015) 1650003 [arXiv:1508.03172] [INSPIRE].ADSGoogle Scholar
  18. [18]
    F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Neutrino masses and mixings: status of known and unknown 3ν parameters, Nucl. Phys. B 908 (2016) 218 [arXiv:1601.07777] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  19. [19]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.M. Bilenky, C. Giunti and W. Grimus, Neutrino mass spectrum from the results of neutrino oscillation experiments, Eur. Phys. J. C 1 (1998) 247 [hep-ph/9607372] [INSPIRE].
  21. [21]
    A. de Gouvea, K.J. Kelly and A. Kobach, CP-invariance violation at short-baseline experiments in 3 + 1 neutrino scenarios, Phys. Rev. D 91 (2015) 053005 [arXiv:1412.1479] [INSPIRE].ADSGoogle Scholar
  22. [22]
    N. Klop and A. Palazzo, Imprints of CP-violation induced by sterile neutrinos in T2K data, Phys. Rev. D 91 (2015) 073017 [arXiv:1412.7524] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.M. Berryman, A. de Gouvêa, K.J. Kelly and A. Kobach, Sterile neutrino at the Deep Underground Neutrino Experiment, Phys. Rev. D 92 (2015) 073012 [arXiv:1507.03986] [INSPIRE].ADSGoogle Scholar
  24. [24]
    R. Gandhi, B. Kayser, M. Masud and S. Prakash, The impact of sterile neutrinos on CP measurements at long baselines, JHEP 11 (2015) 039 [arXiv:1508.06275] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Palazzo, 3-flavor and 4-flavor implications of the latest T2K and NOνA electron (anti-)neutrino appearance results, Phys. Lett. B 757 (2016) 142 [arXiv:1509.03148] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.K. Agarwalla, S.S. Chatterjee, A. Dasgupta and A. Palazzo, Discovery potential of T2K and NOvA in the presence of a light sterile neutrino, JHEP 02 (2016) 111 [arXiv:1601.05995] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Physics reach of DUNE with a light sterile neutrino, JHEP 09 (2016) 016 [arXiv:1603.03759] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Choubey and D. Pramanik, Constraints on sterile neutrino oscillations using DUNE near detector, Phys. Lett. B 764 (2017) 135 [arXiv:1604.04731] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Octant of θ 23 in danger with a light sterile neutrino, Phys. Rev. Lett. 118 (2017) 031804 [arXiv:1605.04299] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Capozzi, C. Giunti, M. Laveder and A. Palazzo, Joint short- and long-baseline constraints on light sterile neutrinos, Phys. Rev. D 95 (2017) 033006 [arXiv:1612.07764] [INSPIRE].ADSGoogle Scholar
  31. [31]
    H.W. Long, Y.F. Li and C. Giunti, CP-violating phases in active-sterile solar neutrino oscillations, Phys. Rev. D 87 (2013) 113004 [arXiv:1304.2207] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C. Giunti, M. Laveder, Y.F. Li and H.W. Long, Short-baseline electron neutrino oscillation length after Troitsk, Phys. Rev. D 87 (2013) 013004 [arXiv:1212.3805] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C. Giunti, M. Laveder, Y.F. Li and H.W. Long, Pragmatic view of short-baseline neutrino oscillations, Phys. Rev. D 88 (2013) 073008 [arXiv:1308.5288] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Giunti, Precise determination of the 235 U reactor antineutrino cross section per fission, Phys. Lett. B 764 (2017) 145 [arXiv:1608.04096] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    MINOS collaboration, P. Adamson et al., Search for sterile neutrinos mixing with muon neutrinos in MINOS, Phys. Rev. Lett. 117 (2016) 151803 [arXiv:1607.01176] [INSPIRE].
  36. [36]
    IceCube collaboration, M.G. Aartsen et al., Searches for sterile neutrinos with the IceCube detector, Phys. Rev. Lett. 117 (2016) 071801 [arXiv:1605.01990] [INSPIRE].
  37. [37]
    Y. Ko et al., Sterile neutrino search at the NEOS experiment, Phys. Rev. Lett. 118 (2017) 121802 [arXiv:1610.05134] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C. Giunti, Oscillations beyond three-neutrino mixing, arXiv:1609.04688 [INSPIRE].
  39. [39]
    G.H. Collin, C.A. Argüelles, J.M. Conrad and M.H. Shaevitz, First constraints on the complete neutrino mixing matrix with a sterile neutrino, Phys. Rev. Lett. 117 (2016) 221801 [arXiv:1607.00011] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  40. [40]
    G.H. Collin, C.A. Argüelles, J.M. Conrad and M.H. Shaevitz, Sterile neutrino fits to short baseline data, Nucl. Phys. B 908 (2016) 354 [arXiv:1602.00671] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  41. [41]
    Daya Bay collaboration, F.P. An et al., Improved measurement of the reactor antineutrino flux and spectrum at daya bay, Chin. Phys. C 41 (2017) 013002 [arXiv:1607.05378] [INSPIRE].
  42. [42]
    N. Okada and O. Yasuda, A sterile neutrino scenario constrained by experiments and cosmology, Int. J. Mod. Phys. A 12 (1997) 3669 [hep-ph/9606411] [INSPIRE].
  43. [43]
    J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Giunti and M. Laveder, 3 + 1 and 3 + 2 sterile neutrino fits, Phys. Rev. D 84 (2011) 073008 [arXiv:1107.1452] [INSPIRE].ADSGoogle Scholar
  45. [45]
    C. Giunti and M. Laveder, Status of 3 + 1 neutrino mixing, Phys. Rev. D 84 (2011) 093006 [arXiv:1109.4033] [INSPIRE].ADSGoogle Scholar
  46. [46]
    C. Giunti and M. Laveder, Implications of 3 + 1 short-baseline neutrino oscillations, Phys. Lett. B 706 (2011) 200 [arXiv:1111.1069] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Archidiacono, N. Fornengo, C. Giunti and A. Melchiorri, Testing 3 + 1 and 3 + 2 neutrino mass models with cosmology and short baseline experiments, Phys. Rev. D 86 (2012) 065028 [arXiv:1207.6515] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, Sterile neutrinos: cosmology versus short-baseline experiments, Phys. Rev. D 87 (2013) 125034 [arXiv:1302.6720] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Unexplained excess of electron-like events from a 1-GeV neutrino beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [INSPIRE].
  51. [51]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations in the MiniBooNE experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1303.2588] [INSPIRE].
  52. [52]
    MicroBooNE collaboration, S. Gollapinni, Accelerator-based short-baseline neutrino oscillation experiments, arXiv:1510.04412 [INSPIRE].
  53. [53]
    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Serebrov et al., Experiment neutrino-4 search for sterile neutrino with multisection detector model, PoS(INPC2016)255 [arXiv:1702.00941] [INSPIRE].
  55. [55]
    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A.A. Kuvshinnikov, L.A. Mikaelyan, S.V. Nikolaev, M.D. Skorokhvatov and A.V. Etenko, Measuring the anti-electron-neutrino + pn + e + cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor (in Russian), JETP Lett. 54 (1991) 253 [INSPIRE].
  57. [57]
    CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino oscillation experiments at the Gosgen nuclear power reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].
  58. [58]
    H. Kwon et al., Search for neutrino oscillations at a fission reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].ADSGoogle Scholar
  59. [59]
    A. Hoummada et al., Neutrino oscillations I.L.L. experiment reanalysis, Appl. Radiat. Isot. 46 (1995) 449.Google Scholar
  60. [60]
    G.S. Vidyakin et al., Detection of anti-neutrinos in the flux from two reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].Google Scholar
  61. [61]
    G.S. Vidyakin et al., Bounds on the neutrino oscillation parameters for reactor anti-neutrinos, Sov. Phys. JETP 71 (1990) 424 [INSPIRE].Google Scholar
  62. [62]
    G.S. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].
  63. [63]
    A.I. Afonin et al., A study of the reaction \( {\overline{\nu}}_e+P\to {e}^{+}+N \) on a nuclear reactor, Sov. Phys. JETP 67 (1988) 213 [INSPIRE].Google Scholar
  64. [64]
    Z.D. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].ADSGoogle Scholar
  65. [65]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  66. [66]
    Yu.V. Kozlov et al., Anti-neutrino deuteron experiment at Krasnoyarsk, Phys. Atom. Nucl. 63 (2000) 1016 [hep-ex/9912047] [INSPIRE].
  67. [67]
    C. Zhang, X. Qian and P. Vogel, Reactor antineutrino anomaly with known θ 13, Phys. Rev. D 87 (2013) 073018 [arXiv:1303.0900] [INSPIRE].ADSGoogle Scholar
  68. [68]
    CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].
  69. [69]
    F. Boehm et al., Final results from the Palo Verde neutrino oscillation experiment, Phys. Rev. D 64 (2001) 112001 [hep-ex/0107009] [INSPIRE].
  70. [70]
    NUCIFER collaboration, G. Boireau et al., Online monitoring of the osiris reactor with the NUCIFER neutrino detector, Phys. Rev. D 93 (2016) 112006 [arXiv:1509.05610] [INSPIRE].
  71. [71]
    H. Seo, Recent Results from RENO, talk presented at AAP 2016, Applied Antineutrino Physics, December 1–2, Liverpool, U.K. (2016).Google Scholar
  72. [72]
    Yu. V. Kozlov et al., Today and future neutrino experiments at Krasnoyarsk nuclear reactor, Nucl. Phys. Proc. Suppl. 87 (2000) 514 [hep-ex/9912046] [INSPIRE].
  73. [73]
    K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, Determination of the anti-neutrino spectrum from U-235 thermal neutron fission products up to 9.5-MeV, Phys. Lett. B 160 (1985) 325 [INSPIRE].
  74. [74]
    A.A. Hahn et al., Anti-neutrino spectra from 241 Pu and 239 Pu thermal neutron fission products, Phys. Lett. B 218 (1989) 365 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    N. Haag, F. von Feilitzsch, L. Oberauer, W. Potzel, K. Schreckenbach and A.A. Sonzogni, Re-publication of the data from the BILL magnetic spectrometer: The cumulative β spectra of the fission products of 235 U, 239 Pu and 241 Pu, arXiv:1405.3501 [INSPIRE].
  76. [76]
    RENO collaboration, J.H. Choi et al., Observation of energy and baseline dependent reactor antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 116 (2016) 211801 [arXiv:1511.05849] [INSPIRE].
  77. [77]
    Double CHOOZ collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ 13 with the Double CHOOZ detector, JHEP 10 (2014) 086 [Erratum ibid. 02 (2015) 074] [arXiv:1406.7763] [INSPIRE].
  78. [78]
    Daya Bay collaboration, F.P. An et al., Measurement of the reactor antineutrino flux and spectrum at Daya Bay, Phys. Rev. Lett. 116 (2016) 061801 [arXiv:1508.04233] [INSPIRE].
  79. [79]
    P. Huber, Reactor antineutrino fluxes — Status and challenges, Nucl. Phys. B 908 (2016) 268 [arXiv:1602.01499] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    A.C. Hayes and P. Vogel, Reactor neutrino spectra, Ann. Rev. Nucl. Part. Sci. 66 (2016) 219 [arXiv:1605.02047] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    T.A. Mueller et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  82. [82]
    P. Huber, NEOS data and the origin of the 5 MeV bump in the reactor antineutrino spectrum, Phys. Rev. Lett. 118 (2017) 042502 [arXiv:1609.03910] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    C. Kraus, A. Singer, K. Valerius and C. Weinheimer, Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment, Eur. Phys. J. C 73 (2013) 2323 [arXiv:1210.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    A.I. Belesev et al., An upper limit on additional neutrino mass eigenstate in 2 to 100 eV region from ‘Troitsk nu-mass’ data, JETP Lett. 97 (2013) 67 [arXiv:1211.7193] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A.I. Belesev et al., The search for an additional neutrino mass eigenstate in the 2-100 eV region from ‘Troitsk nu-mass’ data: a detailed analysis, J. Phys. G 41 (2014) 015001 [arXiv:1307.5687] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    C. Giunti and C.W. Kim, Fundamentals of neutrino physics and astrophysics, Oxford University Press, Oxford, U.K. (2007).CrossRefGoogle Scholar
  87. [87]
    C. Giunti and Y.F. Li, Matter effects in active-sterile solar neutrino oscillations, Phys. Rev. D 80 (2009) 113007 [arXiv:0910.5856] [INSPIRE].ADSGoogle Scholar
  88. [88]
    A. Palazzo, Testing the very-short-baseline neutrino anomalies at the solar sector, Phys. Rev. D 83 (2011) 113013 [arXiv:1105.1705] [INSPIRE].ADSGoogle Scholar
  89. [89]
    A. Palazzo, An estimate of θ 14 independent of the reactor antineutrino flux determinations, Phys. Rev. D 85 (2012) 077301 [arXiv:1201.4280] [INSPIRE].ADSGoogle Scholar
  90. [90]
    A. Palazzo, Phenomenology of light sterile neutrinos: a brief review, Mod. Phys. Lett. A 28 (2013) 1330004 [arXiv:1302.1102] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    B. Armbruster et al., KARMEN limits on electron-neutrinotau-neutrino oscillations in two neutrino and three neutrino mixing schemes, Phys. Rev. C 57 (1998) 3414 [hep-ex/9801007] [INSPIRE].
  92. [92]
    LSND collaboration, L.B. Auerbach et al., Measurements of charged current reactions of ν e on 12-C, Phys. Rev. C 64 (2001) 065501 [hep-ex/0105068] [INSPIRE].
  93. [93]
    J.M. Conrad and M.H. Shaevitz, Limits on electron neutrino disappearance from the KARMEN and LSND ν e -carbon cross section data, Phys. Rev. D 85 (2012) 013017 [arXiv:1106.5552] [INSPIRE].ADSGoogle Scholar
  94. [94]
    T2K collaboration, K. Abe et al., Search for short baseline ν e disappearance with the T2K near detector, Phys. Rev. D 91 (2015) 051102 [arXiv:1410.8811] [INSPIRE].
  95. [95]
    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino measurements in Super-Kamiokande-IV, Phys. Rev. D 94 (2016) 052010 [arXiv:1606.07538] [INSPIRE].
  96. [96]
    Borexino collaboration, G. Bellini et al., Final results of Borexino Phase-I on low energy solar neutrino spectroscopy, Phys. Rev. D 89 (2014) 112007 [arXiv:1308.0443] [INSPIRE].
  97. [97]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  98. [98]
    I. Alekseev et al., DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator, 2016 JINST 11 P11011 [arXiv:1606.02896] [INSPIRE].
  99. [99]
    PROSPECT collaboration, J. Ashenfelter et al., The PROSPECT physics program, J. Phys. G 43 (2016) 113001 [arXiv:1512.02202] [INSPIRE].
  100. [100]
    I. Michiels, SoLid: Search for Oscillation with a 6Li Detector at the BR2 research reactor, arXiv:1605.00215 [INSPIRE].
  101. [101]
    L. Manzanillas, STEREO: Search for sterile neutrinos at the ILL, arXiv:1702.02498 [INSPIRE].
  102. [102]
    Borexino collaboration, G. Bellini et al., SOX: Short distance neutrino Oscillations with BoreXino, JHEP 08 (2013) 038 [arXiv:1304.7721] [INSPIRE].
  103. [103]
    V. Barinov, V. Gavrin, D. Gorbunov and T. Ibragimova, BEST sensitivity to O(1) eV sterile neutrino, Phys. Rev. D 93 (2016) 073002 [arXiv:1602.03826] [INSPIRE].ADSGoogle Scholar
  104. [104]
    A.P. Serebrov et al., NEUTRINO4 experiment: preparations for search for sterile neutrino at 100 MW reactor SM-3 at 6-12 meters, arXiv:1205.2955 [INSPIRE].
  105. [105]
    SoLid collaboration, N. Ryder, First results of the deployment of a SoLid detector module at the SCK-CEN BR2 reactor, PoS(EPS-HEP2015)071 [arXiv:1510.07835] [INSPIRE].
  106. [106]
    STEREO collaboration, V. Hélaine, Sterile neutrino search at the ILL nuclear reactor: the STEREO experiment, arXiv:1604.08877 [INSPIRE].
  107. [107]
    M. Abs et al., IsoDAR@KamLAND: a conceptual design report for the technical facility, arXiv:1511.05130 [INSPIRE].
  108. [108]
    E. Ciuffoli, J. Evslin and F. Zhao, Neutrino physics with accelerator driven subcritical reactors, JHEP 01 (2016) 004 [arXiv:1509.03494] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    G. Drexlin, KATRIN, talk presented at NOW 2016, September 4–11, Otranto, Lecce, Italy (2016).Google Scholar
  110. [110]
    A.S. Riis and S. Hannestad, Detecting sterile neutrinos with KATRIN like experiments, JCAP 02 (2011) 011 [arXiv:1008.1495] [INSPIRE].CrossRefGoogle Scholar
  111. [111]
    J.A. Formaggio and J. Barrett, Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment, Phys. Lett. B 706 (2011) 68 [arXiv:1105.1326] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    A. Sejersen Riis, S. Hannestad and C. Weinheimer, Analysis of simulated data for the KArlsruhe TRItium Neutrino experiment using Bayesian inference, Phys. Rev. C 84 (2011) 045503 [arXiv:1105.6005] [INSPIRE].ADSGoogle Scholar
  113. [113]
    A. Esmaili and O.L.G. Peres, KATRIN sensitivity to sterile neutrino mass in the shadow of lightest neutrino mass, Phys. Rev. D 85 (2012) 117301 [arXiv:1203.2632] [INSPIRE].ADSGoogle Scholar
  114. [114]
    L. Gastaldo, C. Giunti and E.M. Zavanin, Light sterile neutrino sensitivity of 163Ho experiments, JHEP 06 (2016) 061 [arXiv:1605.05497] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    L. Borodovsky et al., Search for muon-neutrino oscillations muon-neutrino oscillations \( {\nu}_{\mu}\to {\nu}_e\left({\overline{\nu}}_{\mu}\to {\overline{\mu}}_e\right) \) in a wide band neutrino beam, Phys. Rev. Lett. 68 (1992) 274 [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) from muon decay at rest, Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021] [INSPIRE].
  117. [117]
    NOMAD collaboration, P. Astier et al., Search for ν μν e oscillations in the NOMAD experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].
  118. [118]
    ICARUS collaboration, M. Antonello et al., Search for anomalies in the ν e appearance from a ν μ beam, Eur. Phys. J. C 73 (2013) 2599 [arXiv:1307.4699] [INSPIRE].
  119. [119]
    OPERA collaboration, N. Agafonova et al., Search for ν μν e oscillations with the OPERA experiment in the CNGS beam, JHEP 07 (2013) 004 [arXiv:1303.3953] [INSPIRE].
  120. [120]
    F. Dydak et al., A search for ν μ oscillations in the Δm 2 range 0.3 eV 2 to 90 eV 2, Phys. Lett. B 134 (1984) 281 [INSPIRE].
  121. [121]
    M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, Phys. Rev. D 76 (2007) 093005 [arXiv:0705.0107] [INSPIRE].ADSGoogle Scholar
  122. [122]
    SciBooNE, MiniBooNE collaboration, K.B.M. Mahn et al., Dual baseline search for muon neutrino disappearance at 0.5 eV 2 < Δm 2 < 40 eV 2, Phys. Rev. D 85 (2012) 032007 [arXiv:1106.5685] [INSPIRE].
  123. [123]
    SciBooNE, MiniBooNE collaboration, G. Cheng et al., Dual baseline search for muon antineutrino disappearance at 0.1 eV 2 < Δm 2 < 10 eV 2, Phys. Rev. D 86 (2012) 052009 [arXiv:1208.0322] [INSPIRE].
  124. [124]
    M.C. Gonzalez-Garcia, F. Halzen and M. Maltoni, Physics reach of high-energy and high-statistics IceCube atmospheric neutrino data, Phys. Rev. D 71 (2005) 093010 [hep-ph/0502223] [INSPIRE].
  125. [125]
    IceCube collaboration, M.G. Aartsen et al., Evidence for astrophysical muon neutrinos from the northern sky with IceCube, Phys. Rev. Lett. 115 (2015) 081102 [arXiv:1507.04005] [INSPIRE].
  126. [126]
    IceCube collaboration, M.G. Aartsen et al., Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube, Phys. Rev. D 91 (2015) 022001 [arXiv:1410.1749] [INSPIRE].
  127. [127]
    C.A. Argüelles Delgado, J. Salvado and C.N. Weaver, A Simple Quantum Integro-Differential Solver (SQuIDS), Comput. Phys. Commun. 196 (2015) 569 [arXiv:1412.3832] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  128. [128]
    M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Calculation of the flux of atmospheric neutrinos, Phys. Rev. D 52 (1995) 4985 [hep-ph/9503439] [INSPIRE].
  129. [129]
    M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, A new calculation of the atmospheric neutrino flux in a 3-dimensional scheme, Phys. Rev. D 70 (2004) 043008 [astro-ph/0404457] [INSPIRE].
  130. [130]
    T. Sanuki, M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation, Phys. Rev. D 75 (2007) 043005 [astro-ph/0611201] [INSPIRE].
  131. [131]
    M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [INSPIRE].
  132. [132]
    T.K. Gaisser, T. Stanev and S. Tilav, Cosmic ray energy spectrum from measurements of air showers, Front. Phys. (Beijing) 8 (2013) 748 [arXiv:1303.3565] [INSPIRE].CrossRefGoogle Scholar
  133. [133]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Interiors 25 (1981) 297.ADSCrossRefGoogle Scholar
  134. [134]
    C.A. Argüelles, F. Halzen, L. Wille, M. Kroll and M.H. Reno, High-energy behavior of photon, neutrino and proton cross sections, Phys. Rev. D 92 (2015) 074040 [arXiv:1504.06639] [INSPIRE].ADSGoogle Scholar
  135. [135]
    C.A. Arguelles, New physics with atmospheric neutrinos, Ph.D. thesis, University of Wisconsin, U.S.A. (2015).Google Scholar
  136. [136]
    B.J.P. Jones, Sterile neutrinos in cold climates, Ph.D. thesis, Massachusetts Institute of Technology (MIT), Cambridge, U.S.A. (2015).Google Scholar
  137. [137]
    J.A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308.MathSciNetzbMATHCrossRefGoogle Scholar
  138. [138]
    H. Nunokawa, O.L.G. Peres and R. Zukanovich Funchal, Probing the LSND mass scale and four neutrino scenarios with a neutrino telescope, Phys. Lett. B 562 (2003) 279 [hep-ph/0302039] [INSPIRE].
  139. [139]
    S. Choubey, Signature of sterile species in atmospheric neutrino data at neutrino telescopes, JHEP 12 (2007) 014 [arXiv:0709.1937] [INSPIRE].ADSCrossRefGoogle Scholar
  140. [140]
    S. Razzaque and A. Yu. Smirnov, Searching for sterile neutrinos in ice, JHEP 07 (2011) 084 [arXiv:1104.1390] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  141. [141]
    S. Razzaque and A.Yu. Smirnov, Searches for sterile neutrinos with IceCube DeepCore, Phys. Rev. D 85 (2012) 093010 [arXiv:1203.5406] [INSPIRE].ADSGoogle Scholar
  142. [142]
    A. Esmaili, F. Halzen and O.L.G. Peres, Constraining sterile neutrinos with AMANDA and IceCube atmospheric neutrino data, JCAP 11 (2012) 041 [arXiv:1206.6903] [INSPIRE].ADSCrossRefGoogle Scholar
  143. [143]
    A. Esmaili and A.Yu. Smirnov, Restricting the LSND and MiniBooNE sterile neutrinos with the IceCube atmospheric neutrino data, JHEP 12 (2013) 014 [arXiv:1307.6824] [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    A. Esmaili, F. Halzen and O.L.G. Peres, Exploring ν τ -nu s mixing with cascade events in DeepCore, JCAP 07 (2013) 048 [arXiv:1303.3294] [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    M. Lindner, W. Rodejohann and X.-J. Xu, Sterile neutrinos in the light of IceCube, JHEP 01 (2016) 124 [arXiv:1510.00666] [INSPIRE].ADSCrossRefGoogle Scholar
  146. [146]
    Super-Kamiokande collaboration, K. Abe et al., Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].
  147. [147]
    IceCube collaboration, M.G. Aartsen et al., Search for sterile neutrino mixing using three years of IceCube DeepCore data, arXiv:1702.05160 [INSPIRE].
  148. [148]
    MINOS collaboration, P. Adamson et al., Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev. D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].
  149. [149]
    MINOS collaboration, P. Adamson et al., Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, Phys. Rev. Lett. 107 (2011) 011802 [arXiv:1104.3922] [INSPIRE].
  150. [150]
    OPERA collaboration, N. Agafonova et al., Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam, JHEP 06 (2015) 069 [arXiv:1503.01876] [INSPIRE].
  151. [151]
    M. Martini, M. Ericson and G. Chanfray, Neutrino energy reconstruction problems and neutrino oscillations, Phys. Rev. D 85 (2012) 093012 [arXiv:1202.4745] [INSPIRE].ADSGoogle Scholar
  152. [152]
    M. Martini, M. Ericson and G. Chanfray, Energy reconstruction effects in neutrino oscillation experiments and implications for the analysis, Phys. Rev. D 87 (2013) 013009 [arXiv:1211.1523] [INSPIRE].ADSGoogle Scholar
  153. [153]
    M. Ericson, M.V. Garzelli, C. Giunti and M. Martini, Assessing the role of nuclear effects in the interpretation of the MiniBooNE low-energy anomaly, Phys. Rev. D 93 (2016) 073008 [arXiv:1602.01390] [INSPIRE].ADSGoogle Scholar
  154. [154]
    LAr1-ND, ICARUS-WA104, MicroBooNE collaboration, M. Antonello et al., A proposal for a three detector short-baseline neutrino oscillation program in the Fermilab booster neutrino beam, arXiv:1503.01520 [INSPIRE].
  155. [155]
    nuPRISM collaboration, S. Bhadra et al., Letter of intent to construct a nuPRISM detector in the J-PARC neutrino beamline, arXiv:1412.3086 [INSPIRE].
  156. [156]
    JSNS2 collaboration, M. Harada et al., Proposal: a search for sterile neutrino at J-PARC materials and life science experimental facility, arXiv:1310.1437 [INSPIRE].
  157. [157]
    S.N. Axani, G. Collin, J.M. Conrad, M.H. Shaevitz, J. Spitz and T. Wongjirad, KPipe: a decisive test for muon neutrino disappearance, arXiv:1510.06994 [INSPIRE].
  158. [158]
    J. Barry, W. Rodejohann and H. Zhang, Light sterile neutrinos: models and phenomenology, JHEP 07 (2011) 091 [arXiv:1105.3911] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  159. [159]
    Y.F. Li and S.-s. Liu, Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos, Phys. Lett. B 706 (2012) 406 [arXiv:1110.5795] [INSPIRE].ADSCrossRefGoogle Scholar
  160. [160]
    W. Rodejohann, Neutrinoless double beta decay and neutrino physics, J. Phys. G 39 (2012) 124008 [arXiv:1206.2560] [INSPIRE].ADSCrossRefGoogle Scholar
  161. [161]
    I. Girardi, A. Meroni and S.T. Petcov, Neutrinoless double beta decay in the presence of light sterile neutrinos, JHEP 11 (2013) 146 [arXiv:1308.5802] [INSPIRE].ADSCrossRefGoogle Scholar
  162. [162]
    S. Pascoli, M. Mitra and S. Wong, Effect of cancellation in neutrinoless double beta decay, Phys. Rev. D 90 (2014) 093005 [arXiv:1310.6218] [INSPIRE].ADSGoogle Scholar
  163. [163]
    A. Meroni and E. Peinado, The quest for neutrinoless double beta decay: pseudo-Dirac, Majorana and sterile neutrinos, Phys. Rev. D 90 (2014) 053002 [arXiv:1406.3990] [INSPIRE].ADSGoogle Scholar
  164. [164]
    A. Abada, V. De Romeri and A.M. Teixeira, Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay, JHEP 09 (2014) 074 [arXiv:1406.6978] [INSPIRE].ADSCrossRefGoogle Scholar
  165. [165]
    C. Giunti and E.M. Zavanin, Predictions for neutrinoless double-beta decay in the 3 + 1 sterile neutrino scenario, JHEP 07 (2015) 171 [arXiv:1505.00978] [INSPIRE].ADSCrossRefGoogle Scholar
  166. [166]
    H. Päs and W. Rodejohann, Neutrinoless double beta decay, New J. Phys. 17 (2015) 115010 [arXiv:1507.00170] [INSPIRE].CrossRefGoogle Scholar
  167. [167]
    S. Hannestad, I. Tamborra and T. Tram, Thermalisation of light sterile neutrinos in the early universe, JCAP 07 (2012) 025 [arXiv:1204.5861] [INSPIRE].ADSCrossRefGoogle Scholar
  168. [168]
    A. Mirizzi, N. Saviano, G. Miele and P.D. Serpico, Light sterile neutrino production in the early universe with dynamical neutrino asymmetries, Phys. Rev. D 86 (2012) 053009 [arXiv:1206.1046] [INSPIRE].ADSGoogle Scholar
  169. [169]
    N. Saviano, A. Mirizzi, O. Pisanti, P.D. Serpico, G. Mangano and G. Miele, Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis, Phys. Rev. D 87 (2013) 073006 [arXiv:1302.1200] [INSPIRE].ADSGoogle Scholar
  170. [170]
    S. Hannestad, R.S. Hansen and T. Tram, Can active-sterile neutrino oscillations lead to chaotic behavior of the cosmological lepton asymmetry?, JCAP 04 (2013) 032 [arXiv:1302.7279] [INSPIRE].ADSCrossRefGoogle Scholar
  171. [171]
    S. Hannestad, R.S. Hansen and T. Tram, How self-interactions can reconcile sterile neutrinos with cosmology, Phys. Rev. Lett. 112 (2014) 031802 [arXiv:1310.5926] [INSPIRE].ADSCrossRefGoogle Scholar
  172. [172]
    B. Dasgupta and J. Kopp, Cosmologically safe eV-scale sterile neutrinos and improved dark matter structure, Phys. Rev. Lett. 112 (2014) 031803 [arXiv:1310.6337] [INSPIRE].ADSCrossRefGoogle Scholar
  173. [173]
    A. Mirizzi, G. Mangano, O. Pisanti and N. Saviano, Collisional production of sterile neutrinos via secret interactions and cosmological implications, Phys. Rev. D 91 (2015) 025019 [arXiv:1410.1385] [INSPIRE].ADSGoogle Scholar
  174. [174]
    N. Saviano, O. Pisanti, G. Mangano and A. Mirizzi, Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis, Phys. Rev. D 90 (2014) 113009 [arXiv:1409.1680] [INSPIRE].ADSGoogle Scholar
  175. [175]
    F. Forastieri, M. Lattanzi and P. Natoli, Constraints on secret neutrino interactions after Planck, JCAP 07 (2015) 014 [arXiv:1504.04999] [INSPIRE].ADSCrossRefGoogle Scholar
  176. [176]
    X. Chu, B. Dasgupta and J. Kopp, Sterile neutrinos with secret interactions—lasting friendship with cosmology, JCAP 10 (2015) 011 [arXiv:1505.02795] [INSPIRE].ADSCrossRefGoogle Scholar
  177. [177]
    M. Archidiacono et al., Pseudoscalar-sterile neutrino interactions: reconciling the cosmos with neutrino oscillations, JCAP 08 (2016) 067 [arXiv:1606.07673] [INSPIRE].ADSCrossRefGoogle Scholar
  178. [178]
    M. Maltoni and T. Schwetz, Testing the statistical compatibility of independent data sets, Phys. Rev. D 68 (2003) 033020 [hep-ph/0304176] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • S. Gariazzo
    • 1
  • C. Giunti
    • 2
    Email author
  • M. Laveder
    • 3
    • 4
  • Y. F. Li
    • 5
    • 6
  1. 1.Instituto de Física Corpuscular (CSIC-Universitat de València)PaternaSpain
  2. 2.INFN — Sezione di TorinoTorinoItaly
  3. 3.Dipartimento di Fisica e Astronomia “G. Galilei”Università di PadovaPadovaItaly
  4. 4.INFN — Sezione di PadovaPadovaItaly
  5. 5.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  6. 6.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations