Phase transitions, inhomogeneous horizons and second-order hydrodynamics

  • Maximilian Attems
  • Yago Bea
  • Jorge Casalderrey-Solana
  • David Mateos
  • Miquel Triana
  • Miguel Zilhão
Open Access
Regular Article - Theoretical Physics


We use holography to study the spinodal instability of a four-dimensional, strongly-coupled gauge theory with a first-order thermal phase transition. We place the theory on a cylinder in a set of homogeneous, unstable initial states. The dual gravity configurations are black branes afflicted by a Gregory-Laflamme instability. We numerically evolve Einstein’s equations to follow the instability until the system settles down to a stationary, inhomogeneous black brane. The dual gauge theory states have constant temperature but non-constant energy density. We show that the time evolution of the instability and the final states are accurately described by second-order hydrodynamics. In the static limit, the latter reduces to a single, second-order, non-linear differential equation from which the inhomogeneous final states can be derived.


Black Holes Gauge-gravity correspondence Holography and quark-gluon plasmas 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    STAR collaboration, K.H. Ackermann et al., Elliptic flow in Au+Au collisions at \( \sqrt{s_{N\ N}}=130 \) GeV, Phys. Rev. Lett. 86 (2001) 402 [nucl-ex/0009011] [INSPIRE].
  2. [2]
    PHENIX collaboration, S.S. Adler et al., Elliptic flow of identified hadrons in Au+Au collisions at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Rev. Lett. 91 (2003) 182301 [nucl-ex/0305013] [INSPIRE].
  3. [3]
    PHOBOS collaboration, B.B. Back et al., Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Rev. C 72 (2005)051901 [nucl-ex/0407012] [INSPIRE].
  4. [4]
    ATLAS collaboration, Measurement of the azimuthal anisotropy for charged particle production in \( \sqrt{s_{N\ N}}=2.76 \) TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 86 (2012) 014907 [arXiv:1203.3087] [INSPIRE].
  5. [5]
    CMS collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at \( \sqrt{s_{N\ N}}=2.76 \) TeV, Phys. Rev. C 87(2013)014902 [arXiv:1204.1409] [INSPIRE].
  6. [6]
    ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].
  7. [7]
    P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen and S.A. Voloshin, Radial and elliptic flow at RHIC: further predictions, Phys. Lett. B 503 (2001) 58 [hep-ph/0101136] [INSPIRE].
  8. [8]
    D. Teaney, J. Lauret and E.V. Shuryak, A hydrodynamic description of heavy ion collisions at the SPS and RHIC, nucl-th/0110037 [INSPIRE].
  9. [9]
    T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey and Y. Nara, Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions, Phys. Lett. B 636 (2006) 299 [nucl-th/0511046] [INSPIRE].
  10. [10]
    M. Luzum and P. Romatschke, Conformal relativistic viscous hydrodynamics: applications to RHIC results at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Rev. C 78 (2008) 034915 [Erratum ibid. C 79 (2009)039903] [arXiv:0804.4015] [INSPIRE].
  11. [11]
    B. Schenke, S. Jeon and C. Gale, Elliptic and triangular flow in event-by-event (3 + 1)D viscous hydrodynamics, Phys. Rev. Lett. 106 (2011) 042301 [arXiv:1009.3244] [INSPIRE].
  12. [12]
    T. Hirano, P. Huovinen and Y. Nara, Elliptic flow in Pb+Pb collisions at \( \sqrt{s_{N\ N}}=2.76 \) TeV: hybrid model assessment of the first data, Phys. Rev. C 84 (2011) 011901 [arXiv:1012.3955] [INSPIRE].
  13. [13]
    C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun. 199 (2016) 61 [arXiv:1409.8164] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954] [INSPIRE].
  15. [15]
    P. Romatschke, Do nuclear collisions create a locally equilibrated quark-gluon plasma?, Eur. Phys. J. C 77 (2017) 21 [arXiv:1609.02820] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    CMS collaboration, Observation of long-range near-side angular correlations in proton-proton collisions at the LHC, JHEP 09 (2010) 091 [arXiv:1009.4122] [INSPIRE].
  17. [17]
    ATLAS collaboration, Observation of long-range elliptic azimuthal anisotropies in \( \sqrt{s}=13 \) and 2.76 TeV pp collisions with the ATLAS detector, Phys. Rev. Lett. 116 (2016) 172301 [arXiv:1509.04776] [INSPIRE].
  18. [18]
    CMS collaboration, Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765 (2017)193 [arXiv:1606.06198] [INSPIRE].
  19. [19]
    P. Bozek, Collective flow in p-Pb and d-Pd collisions at TeV energies, Phys. Rev. C 85 (2012) 014911 [arXiv:1112.0915] [INSPIRE].
  20. [20]
    B. Schenke and R. Venugopalan, Eccentric protons? Sensitivity of flow to system size and shape in p+p, p+Pb and Pb+Pb collisions, Phys. Rev. Lett. 113 (2014) 102301 [arXiv:1405.3605] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    I. Kozlov, M. Luzum, G. Denicol, S. Jeon and C. Gale, Transverse momentum structure of pair correlations as a signature of collective behavior in small collision systems, arXiv:1405.3976 [INSPIRE].
  22. [22]
    R.D. Weller and P. Romatschke, One fluid to rule them all: viscous hydrodynamic description of event-by-event central p+p, p+Pb and Pb+Pb collisions at \( \sqrt{s}=5.02 \) TeV, arXiv:1701.07145 [INSPIRE].
  23. [23]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P.M. Chesler, How big are the smallest drops of quark-gluon plasma?, JHEP 03 (2016) 146 [arXiv:1601.01583] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Attems et al., Holographic collisions in non-conformal theories, JHEP 01 (2017) 026 [arXiv:1604.06439] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions, Phys. Rev. Lett. 115 (2015) 182301 [arXiv:1506.06647] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Keegan, A. Kurkela, A. Mazeliauskas and D. Teaney, Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution, JHEP 08 (2016) 171 [arXiv:1605.04287] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    R.A. Janik, J. Jankowski and H. Soltanpanahi, Nonequilibrium dynamics and phase transitions in holographic models, Phys. Rev. Lett. 117 (2016) 091603 [arXiv:1512.06871] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    U. Gürsoy, A. Jansen and W. van der Schee, New dynamical instability in asymptotically anti-de Sitter spacetime, Phys. Rev. D 94 (2016) 061901 [arXiv:1603.07724] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Ó. J.C. Dias, J.E. Santos and B. Way, Localised and nonuniform thermal states of super-Yang-Mills on a circle, JHEP 06 (2017) 029 [arXiv:1702.07718] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Attems et al., Thermodynamics, transport and relaxation in non-conformal theories, JHEP 10 (2016) 155 [arXiv:1603.01254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    P. Chomaz, M. Colonna and J. Randrup, Nuclear spinodal fragmentation, Phys. Rept. 389 (2004) 263 [INSPIRE].
  36. [36]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Eling and Y. Oz, A novel formula for bulk viscosity from the null horizon focusing equation, JHEP 06 (2011) 007 [arXiv:1103.1657] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    M. Attems et al., Paths to equilibrium in non-conformal collisions, arXiv:1703.09681 [INSPIRE].
  39. [39]
    A. Buchel, A holographic perspective on Gubser-Mitra conjecture, Nucl. Phys. B 731 (2005) 109 [hep-th/0507275] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    P. Romatschke, Relativistic viscous fluid dynamics and non-equilibrium entropy, Class. Quant. Grav. 27 (2010) 025006 [arXiv:0906.4787] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    P. Kleinert and J. Probst, Second-order hydrodynamics and universality in non-conformal holographic fluids, JHEP 12 (2016) 091 [arXiv:1610.01081] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    A. Buchel, M.P. Heller and R.C. Myers, Equilibration rates in a strongly coupled nonconformal quark-gluon plasma, Phys. Rev. Lett. 114 (2015) 251601 [arXiv:1503.07114] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L. Lehner and F. Pretorius, Black strings, low viscosity fluids and violation of cosmic censorship, Phys. Rev. Lett. 105 (2010) 101102 [arXiv:1006.5960] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC)Universitat de BarcelonaBarcelonaSpain
  2. 2.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  3. 3.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  4. 4.CENTRA, Departamento de Física, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations