Colorful Twisted Top Partners and Partnerium at the LHC

  • Yevgeny Kats
  • Matthew McCullough
  • Gilad Perez
  • Yotam Soreq
  • Jesse Thaler
Open Access
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract

In scenarios that stabilize the electroweak scale, the top quark is typically accompanied by partner particles. In this work, we demonstrate how extended stabilizing symmetries can yield scalar or fermionic top partners that transform as ordinary color triplets but carry exotic electric charges. We refer to these scenarios as “hypertwisted” since they involve modifications to hypercharge in the top sector. As proofs of principle, we construct two hypertwisted scenarios: a supersymmetric construction with spin-0 top partners, and a composite Higgs construction with spin-1/2 top partners. In both cases, the top partners are still phenomenologically compatible with the mass range motivated by weak-scale naturalness. The phenomenology of hypertwisted scenarios is diverse, since the lifetimes and decay modes of the top partners are model dependent. The novel coupling structure opens up search channels that do not typically arise in top-partner scenarios, such as pair production of top-plus-jet resonances. Furthermore, hypertwisted top partners are typically sufficiently long lived to form “top-partnerium” bound states that decay predominantly via annihilation, motivating searches for rare narrow resonances with diboson decay modes.

Keywords

Phenomenological Models Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D.B. Kaplan and H. Georgi, SU(2) x U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire and J.G. Wacker, The Minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].
  7. [7]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The Littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].
  8. [8]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  9. [9]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  10. [10]
    Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
  11. [11]
    Z. Chacko, Y. Nomura, M. Papucci and G. Perez, Natural little hierarchy from a partially goldstone twin Higgs, JHEP 01 (2006) 126 [hep-ph/0510273] [INSPIRE].
  12. [12]
    Z. Chacko, H.-S. Goh and R. Harnik, A Twin Higgs model from left-right symmetry, JHEP 01 (2006) 108 [hep-ph/0512088] [INSPIRE].
  13. [13]
    A. Falkowski, S. Pokorski and M. Schmaltz, Twin SUSY, Phys. Rev. D 74 (2006) 035003 [hep-ph/0604066] [INSPIRE].
  14. [14]
    S. Chang, L.J. Hall and N. Weiner, A Supersymmetric twin Higgs, Phys. Rev. D 75 (2007) 035009 [hep-ph/0604076] [INSPIRE].
  15. [15]
    P. Batra and Z. Chacko, A Composite Twin Higgs Model, Phys. Rev. D 79 (2009) 095012 [arXiv:0811.0394] [INSPIRE].ADSGoogle Scholar
  16. [16]
    N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs, JHEP 03 (2014) 140 [arXiv:1312.1341] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N. Craig, S. Knapen and P. Longhi, Neutral Naturalness from Orbifold Higgs Models, Phys. Rev. Lett. 114 (2015) 061803 [arXiv:1410.6808] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Craig, S. Knapen and P. Longhi, The Orbifold Higgs, JHEP 03 (2015) 106 [arXiv:1411.7393] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Geller and O. Telem, Holographic Twin Higgs Model, Phys. Rev. Lett. 114 (2015) 191801 [arXiv:1411.2974] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, The Composite Twin Higgs scenario, JHEP 08 (2015) 161 [arXiv:1501.07803] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Low, A. Tesi and L.-T. Wang, Twin Higgs mechanism and a composite Higgs boson, Phys. Rev. D 91 (2015) 095012 [arXiv:1501.07890] [INSPIRE].ADSGoogle Scholar
  22. [22]
    N. Craig, A. Katz, M. Strassler and R. Sundrum, Naturalness in the Dark at the LHC, JHEP 07 (2015) 105 [arXiv:1501.05310] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N. Craig, S. Knapen, P. Longhi and M. Strassler, The Vector-like Twin Higgs, JHEP 07 (2016) 002 [arXiv:1601.07181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    R. Barbieri, L.J. Hall and K. Harigaya, Minimal Mirror Twin Higgs, JHEP 11 (2016) 172 [arXiv:1609.05589] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Katz, A. Mariotti, S. Pokorski, D. Redigolo and R. Ziegler, SUSY Meets Her Twin, JHEP 01 (2017) 142 [arXiv:1611.08615] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Contino, D. Greco, R. Mahbubani, R. Rattazzi and R. Torre, Precision Tests and Fine Tuning in Twin Higgs Models, arXiv:1702.00797 [INSPIRE].
  27. [27]
    M. Badziak and K. Harigaya, Supersymmetric D-term Twin Higgs, arXiv:1703.02122 [INSPIRE].
  28. [28]
    H. Cai, H.-C. Cheng and J. Terning, A Quirky Little Higgs Model, JHEP 05 (2009) 045 [arXiv:0812.0843] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP 02 (2007) 009 [hep-ph/0609152] [INSPIRE].
  30. [30]
    T. Cohen, N. Craig, H.K. Lou and D. Pinner, Folded Supersymmetry with a Twist, JHEP 03 (2016) 196 [arXiv:1508.05396] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Poland and J. Thaler, The Dark Top, JHEP 11 (2008) 083 [arXiv:0808.1290] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Batell and M. McCullough, Neutrino Masses from Neutral Top Partners, Phys. Rev. D 92 (2015) 073018 [arXiv:1504.04016] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partner Hunter’s Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M. Drees and M.M. Nojiri, A new signal for scalar top bound state production, Phys. Rev. Lett. 72 (1994) 2324 [hep-ph/9310209] [INSPIRE].
  35. [35]
    M. Drees and M.M. Nojiri, Production and decay of scalar stoponium bound states, Phys. Rev. D 49 (1994) 4595 [hep-ph/9312213] [INSPIRE].
  36. [36]
    S.P. Martin, Diphoton decays of stoponium at the Large Hadron Collider, Phys. Rev. D 77 (2008) 075002 [arXiv:0801.0237] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S.P. Martin and J.E. Younkin, Radiative corrections to stoponium annihilation decays, Phys. Rev. D 80 (2009) 035026 [arXiv:0901.4318] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J.E. Younkin and S.P. Martin, QCD corrections to stoponium production at hadron colliders, Phys. Rev. D 81 (2010) 055006 [arXiv:0912.4813] [INSPIRE].ADSGoogle Scholar
  39. [39]
    N. Kumar and S.P. Martin, LHC search for di-Higgs decays of stoponium and other scalars in events with two photons and two bottom jets, Phys. Rev. D 90 (2014) 055007 [arXiv:1404.0996] [INSPIRE].ADSGoogle Scholar
  40. [40]
    Y. Kats and M.D. Schwartz, Annihilation decays of bound states at the LHC, JHEP 04 (2010) 016 [arXiv:0912.0526] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    D. Kahawala and Y. Kats, Distinguishing spins at the LHC using bound state signals, JHEP 09 (2011) 099 [arXiv:1103.3503] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    V. Barger, M. Ishida and W.-Y. Keung, Searching for Stoponium along with the Higgs boson, Phys. Rev. Lett. 108 (2012) 081804 [arXiv:1110.2147] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C. Kim, A. Idilbi, T. Mehen and Y.W. Yoon, Production of Stoponium at the LHC, Phys. Rev. D 89 (2014) 075010 [arXiv:1401.1284] [INSPIRE].ADSGoogle Scholar
  44. [44]
    B. Batell and S. Jung, Probing Light Stops with Stoponium, JHEP 07 (2015) 061 [arXiv:1504.01740] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S.L. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].ADSGoogle Scholar
  46. [46]
    M.K. Gaillard and B.W. Lee, Rare Decay Modes of the K-Mesons in Gauge Theories, Phys. Rev. D 10 (1974) 897 [INSPIRE].ADSGoogle Scholar
  47. [47]
    T. Appelquist, R.M. Barnett, and K.D. Lane, Charm and beyond, Ann. Rev. Nucl. Part. Sci. 28 (1978) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    E598 collaboration, J.J. Aubert et al., Experimental Observation of a Heavy Particle J, Phys. Rev. Lett. 33 (1974) 1404 [INSPIRE].
  49. [49]
    SLAC-SP-017 collaboration, J.E. Augustin et al., Discovery of a Narrow Resonance in e+eAnnihilation, Phys. Rev. Lett. 33 (1974) 1406 [INSPIRE].
  50. [50]
    T. Appelquist and H.D. Politzer, Orthocharmonium and e + e Annihilation, Phys. Rev. Lett. 34 (1975) 43 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Z. Chacko, C.A. Krenke and T. Okui, Supersymmetry in Slow Motion, JHEP 01 (2009) 050 [arXiv:0809.3820] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].
  53. [53]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [INSPIRE].
  54. [54]
    I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [INSPIRE].
  55. [55]
    D. Choudhury, T.M.P. Tait and C.E.M. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].
  56. [56]
    CMS collaboration, Search for heavy stable charged particles with 12.9 fb−1 of 2016 data, CMS-PAS-EXO-16-036 (2016).
  57. [57]
    ATLAS collaboration, Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 760 (2016) 647 [arXiv:1606.05129] [INSPIRE].
  58. [58]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].
  59. [59]
    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    J. Scherk and J.H. Schwarz, Spontaneous Breaking of Supersymmetry Through Dimensional Reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    E. Cremmer, J. Scherk and J.H. Schwarz, Spontaneously Broken N = 8 Supergravity, Phys. Lett. B 84 (1979) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    P. Fayet, Supersymmetric Grand Unification in a Six-dimensional Space-time, Phys. Lett. 159B (1985) 121 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    P. Fayet, Six-dimensional Supersymmetric QED, R Invariance and N = 2 Supersymmetry Breaking by Dimensional Reduction, Nucl. Phys. B 263 (1986) 649 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    R. Rohm, Spontaneous Supersymmetry Breaking in Supersymmetric String Theories, Nucl. Phys. B 237 (1984) 553 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    C. Kounnas and M. Porrati, Spontaneous Supersymmetry Breaking in String Theory, Nucl. Phys. B 310 (1988) 355 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner, Superstrings with Spontaneously Broken Supersymmetry and their Effective Theories, Nucl. Phys. B 318 (1989) 75 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    C. Kounnas and B. Rostand, Coordinate Dependent Compactifications and Discrete Symmetries, Nucl. Phys. B 341 (1990) 641 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    E. Kiritsis, C. Kounnas, P.M. Petropoulos and J. Rizos, Solving the decompactification problem in string theory, Phys. Lett. B 385 (1996) 87 [hep-th/9606087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    N. Arkani-Hamed, L.J. Hall, Y. Nomura, D. Tucker-Smith and N. Weiner, Finite radiative electroweak symmetry breaking from the bulk, Nucl. Phys. B 605 (2001) 81 [hep-ph/0102090] [INSPIRE].
  70. [70]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY Endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  72. [72]
    A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General Minimal Flavor Violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE].ADSGoogle Scholar
  73. [73]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].
  74. [74]
    G.D. Kribs and A. Martin, Supersoft Supersymmetry is Super-Safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  75. [75]
    M. Heikinheimo, M. Kellerstein and V. Sanz, How Many Supersymmetries?, JHEP 04 (2012) 043 [arXiv:1111.4322] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    R. Mahbubani, M. Papucci, G. Perez, J.T. Ruderman and A. Weiler, Light Nondegenerate Squarks at the LHC, Phys. Rev. Lett. 110 (2013) 151804 [arXiv:1212.3328] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    ATLAS collaboration, A search for pair produced resonances in four jets final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, ATLAS-CONF-2016-084 (2016).
  78. [78]
    O. Gedalia and G. Perez, Flavor Physics, in Physics of the Large and the Small, TASI 2009, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, U.S.A., 1–26 June 2009, pp. 309–382 (2011) [arXiv:1005.3106] [INSPIRE].
  79. [79]
    G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi and L. Vecchi, On Partial Compositeness and the CP asymmetry in charm decays, Nucl. Phys. B 867 (2013) 394 [arXiv:1205.5803] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  81. [81]
    M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].
  82. [82]
    M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [INSPIRE].
  83. [83]
    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961] [INSPIRE].CrossRefMATHGoogle Scholar
  84. [84]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].
  85. [85]
    J. Thaler and I. Yavin, The Littlest Higgs in Anti-de Sitter space, JHEP 08 (2005) 022 [hep-ph/0501036] [INSPIRE].
  86. [86]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  87. [87]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].
  88. [88]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].
  89. [89]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].
  90. [90]
    Y. Kats and M.J. Strassler, Probing Colored Particles with Photons, Leptons and Jets, JHEP 11 (2012) 097 [Erratum ibid. 07 (2016) 009] [arXiv:1204.1119] [INSPIRE].
  91. [91]
    C. Han, K. Ichikawa, S. Matsumoto, M.M. Nojiri and M. Takeuchi, Heavy fermion bound states for diphoton excess at 750 GeV — collider and cosmological constraints, JHEP 04 (2016) 159 [arXiv:1602.08100] [INSPIRE].ADSGoogle Scholar
  92. [92]
    Y. Kats and M.J. Strassler, Resonances from QCD bound states and the 750 GeV diphoton excess, JHEP 05 (2016) 092 [Erratum ibid. 07 (2016) 044] [arXiv:1602.08819] [INSPIRE].
  93. [93]
    K. Blum, A. Efrati, C. Frugiuele and Y. Nir, Exotic colored scalars at the LHC, JHEP 02 (2017) 104 [arXiv:1610.06582] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    L. Wu, J.M. Yang, C.-P. Yuan and M. Zhang, Higgs self-coupling in the MSSM and NMSSM after the LHC Run 1, Phys. Lett. B 747 (2015) 378 [arXiv:1504.06932] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    ATLAS collaboration, Search for scalar diphoton resonances with 15.4 fb −1 of data collected at \( \sqrt{s}=13 \) TeV in 2015 and 2016 with the ATLAS detector, ATLAS-CONF-2016-059 (2016).
  96. [96]
    ATLAS collaboration, Search for new phenomena in the Z(→ℓℓ) + E Tmiss final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-056 (2016).
  97. [97]
    ATLAS collaboration, Searches for heavy ZZ and ZW resonances in the llqq and vvqq final states in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-082 (2016).
  98. [98]
    ATLAS collaboration, Search for diboson resonance production in the ℓνqq final state using pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-062 (2016).
  99. [99]
    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using protonproton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-049 (2016).
  100. [100]
    CMS collaboration, Search for resonant production of high mass photon pairs using 12.9 fb−1 of proton-proton collisions at \( \sqrt{s}=13 \) TeV and combined interpretation of searches at 8 and 13 TeV, CMS-PAS-EXO-16-027 (2016).
  101. [101]
    CMS collaboration, Search for massive resonances decaying into WW, WZ, ZZ, qW and qZ in the dijet final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-B2G-17-001 (2017).
  102. [102]
    CMS collaboration, Search for pair production of Higgs bosons in the two tau leptons and two bottom quarks final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-002 (2017).
  103. [103]
    CMS collaboration, Search for resonant and non-resonant Higgs boson pair production in the \( \mathrm{b}\overline{\mathrm{b}}\mathrm{l}\nu \mathrm{l}\nu \) final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-006 (2017).
  104. [104]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  105. [105]
    C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP 10 (2013) 160 [arXiv:1306.4655] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    B.A. Kniehl, C.P. Palisoc and L. Zwirner, Associated production of heavy quarkonia and electroweak bosons at present and future colliders, Phys. Rev. D 66 (2002) 114002 [hep-ph/0208104] [INSPIRE].
  107. [107]
    B.A. Kniehl, C.P. Palisoc and L. Zwirner, Associated production of bottomonia and Higgs bosons at hadron colliders, Phys. Rev. D 69 (2004) 115005 [hep-ph/0404039] [INSPIRE].
  108. [108]
    ATLAS collaboration, Search for new high-mass resonances in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-045 (2016).
  109. [109]
    CMS collaboration, Search for a high-mass resonance decaying into a dilepton final state in 13 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-031 (2016).
  110. [110]
    CMS collaboration, Search for pair production of resonances decaying to a top quark plus a jet in final states with two leptons, CMS-PAS-B2G-12-008 (2013).
  111. [111]
    CMS collaboration, Searches for R-parity-violating supersymmetry in ppcollisions at \( \sqrt{s}=8 \) TeV in final states with 0-4 leptons, Phys. Rev. D 94 (2016) 112009 [arXiv:1606.08076] [INSPIRE].
  112. [112]
    CMS collaboration, Search for pair production of excited top quarks in the lepton + jets final state, JHEP 06 (2014) 125 [arXiv:1311.5357] [INSPIRE].
  113. [113]
    ATLAS collaboration, Search for pair production of a new heavy quark that decays into a W boson and a light quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 112007 [arXiv:1509.04261] [INSPIRE].
  114. [114]
    CMS collaboration, Search for low-mass pair-produced dijet resonances using jet substructure techniques in proton-proton collisions at a center-of-mass energy of \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-16-029 (2016).
  115. [115]
    CMS collaboration, Searches for light- and heavy-flavour three-jet resonances in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 730 (2014) 193 [arXiv:1311.1799] [INSPIRE].
  116. [116]
    CMS collaboration, Search for the third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, arXiv:1703.03995 [INSPIRE].
  117. [117]
    ATLAS collaboration, Summary of the searches for squarks and gluinos using \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS experiment at the LHC, JHEP 10 (2015) 054 [arXiv:1507.05525] [INSPIRE].
  118. [118]
    ATLAS collaboration, ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C 75 (2015) 510 [Erratum ibid. C76 (2016) 153] [arXiv:1506.08616] [INSPIRE].
  119. [119]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 392 [arXiv:1605.03814] [INSPIRE].
  120. [120]
    CMS collaboration, Further SUSY Simplified Model interpretations for Moriond 2016, CMS-PAS-SUS-16-004 (2016).
  121. [121]
    CMS collaboration, Searches for pair production of third-generation squarks in \( \sqrt{s}=13 \) TeV pp collisions, Eur. Phys. J. C 77 (2017) 327 [arXiv:1612.03877] [INSPIRE].
  122. [122]
    CMS collaboration, Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV, CMS-PAS-SUS-16-033 (2017).
  123. [123]
    CMS collaboration, Search for direct top squark pair production in the all-hadronic final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-16-049 (2017).
  124. [124]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    N. Arkani-Hamed, T. Cohen, R.T. D’Agnolo, A. Hook, H.D. Kim and D. Pinner, Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom, Phys. Rev. Lett. 117 (2016) 251801 [arXiv:1607.06821] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    A. Arvanitaki, S. Dimopoulos, V. Gorbenko, J. Huang and K. Tilburg, A small weak scale from a small cosmological constant, JHEP 05 (2017) 071 [arXiv:1609.06320] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210 (2017) 103 [arXiv:1601.05437] [INSPIRE].CrossRefGoogle Scholar
  128. [128]
    G.V. Efimov, Bound states in quantum field theory, scalar fields, hep-ph/9907483 [INSPIRE].
  129. [129]
    J. Darewych, Variational two-particle wave equation in scalar quantum field theory, Cond. Matt. Phys. 3 (2000) 633.CrossRefGoogle Scholar
  130. [130]
    K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  131. [131]
    M.J. Strassler and M.E. Peskin, The Heavy top quark threshold: QCD and the Higgs, Phys. Rev. D 43 (1991) 1500 [INSPIRE].ADSGoogle Scholar
  132. [132]
    F.J. Rogers, H.C. Graboske Jr. and D.J. Harwood, Bound Eigenstates of the Static Screened Coulomb Potential, Phys. Rev. A 1 (1970) 1577.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Yevgeny Kats
    • 1
    • 2
    • 3
  • Matthew McCullough
    • 1
  • Gilad Perez
    • 3
  • Yotam Soreq
    • 4
  • Jesse Thaler
    • 4
  1. 1.Theoretical Physics DepartmentCERNGenevaSwitzerland
  2. 2.Department of PhysicsBen-Gurion UniversityBeer-ShevaIsrael
  3. 3.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  4. 4.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations